
On the Advantage of a Non-Clausal Davis-Putnam Procedure

Jens Otten ∗

Fachgebiet Intellektik, Fachbereich Informatik

Technische Hochschule Darmstadt

Alexanderstr. 10, 64283 Darmstadt, Germany

jeotten@intellektik.informatik.th-darmstadt.de

Abstract

We propose a non-clausal decision procedure
for classical propositional logic. It is a gener-
alization of the Davis-Putnam procedure and
deals with formulae which are not necessar-
ily in clausal form. Since there is no need to
translate the investigated formula into normal
form, we avoid increasing its size but preserve
its structure. This will in general lead to a
much smaller search space and thus to a more
efficient method. We introduce a short Prolog
implementation of our procedure showing that
it is possible to implement a non-clausal de-
cision procedure in a compact and adaptable
way. To demonstrate the good performance of
the non-clausal approach some experimental re-
sults are provided. To this end we compare
the non-clausal implementation with a clausal-
based Davis-Putnam prover using the standard
translation into clausal form as well as the de-
finitional translation.

1 Introduction

Decision procedures for classical propositional logic, i.e.
procedures determining whether or not a given proposi-
tional formula is valid, play an important role in the field
of Artificial Intelligence and mathematical logic. Auto-
mated theorem proving, solving hard combinatorical op-
timization problems and verifying circuits in hardware
design are some of these applications.

The Davis-Putnam procedure [Davis and Putnam,
1960] or (more precisely) the Davis-Logemann-Loveland
procedure [Davis et al., 1962] is one of the most famous
and successful decision procedures for classical proposi-
tional logic. The essential idea of this procedure consists
of the following step: Assign the truth values “true” and
“false” to a selected atomic formula A of the investigated
formula F and simplify both resulting formulae F1 and
F2 accordingly. The original formula F is valid if and
only if both formulae F1 and F2 are valid. Applying
this step recursively to the resulting formulae F1 and F2

∗The author is supported by the Adolf Messer Stiftung

yields a search tree of which the leaves are marked with
“true” or “false”. If all leaves are marked with “true”
the formula F is valid, otherwise F is not valid.

There are many implementations of the Davis-Putnam
procedure, e.g. C-Sat, Ldpp [Uribe and Stickel, 1994],
Posit [Freeman, 1995], Sato [Zhang, 1993], Satx [Li,
1996], Tableau [Crawford and Auton, 1993]. All these
implementations have in common, that they require the
formulae to be proven in clausal form. Since the usual
translation into clausal form is based on the applica-
tion of distributivity laws, this leads to an exponential
increase of the resulting clausal form in the worst-case.
Using a definitional translation [Eder, 1992; Plaisted and
Greenbaum, 1986] yields (at most) a quadratic increase
of the resulting formula’s size at the expense of intro-
ducing new atomic formulae.

The aim of this paper is not to present another imple-
mentation of the Davis-Putnam procedure (although an
implementation is given), but to propose a non-clausal
version of this method. By generalizing this procedure
to deal with arbitrary formulae we avoid any translation
steps. Thus we do not only avoid to increase the size
of the formula, but we also shorten the search tree con-
siderably. Furthermore, the application of an additional
split rule is possible which also reduce the search space.

Operating on a matrix representation of a formula,
we will get a short and elegant description of the non-
clausal proof procedure. In the following we will also
show that such a procedure can be implemented in a
very compact way and that this approach indeed has a
good performance compared to a clausal-based proce-
dure. The problems we have used to test the perfor-
mance stem from deciding the validity of a formula F in
intuitionistic propositional logic via a translation T into
classical propositional logic. In this context the formula
F is intuitionistically valid if and only if the translated
(non-clausal) formula T (F) is classically valid.

This paper is organized as follows. In the next section
the standard Davis-Putnam procedure is introduced.
The non-clausal approach is described in section 3 and an
implementation in Prolog is given in section 4. The per-
formance compared to a clausal procedure is presented
in section 5. We conclude with a summary of the results
and a few remarks on further investigations.

2 The Davis-Putnam Procedure

In this section the usual Davis-Putnam procedure is in-
troduced and its technique is explained. In the next
section we will generalize this technique to obtain a non-
clausal procedure.

The Davis Putnam procedure requires the input for-
mula to be in disjunctive normal form.1

Definition: A formula F is in disjunctive normal
form (or clausal form), iff it is a disjunction of clause-
formulae, i.e. of the form F ≡ c1∨c2∨ . . .∨cn. A clause-
formula ci is a conjunction of literals, i.e. of the form
ci ≡ Li1∧Li2∧..∧Limi

. A literal is either an atomic for-
mula (positive literal) or its negation (negative literal).

To simplify the proof procedure as well as the notation
of formulae, we use a matrix representation for formulae.
Definition: The matrix M of a formula F is the set
of clauses of F , i.e. M = {C1, C2, . . . , Cn}, where each
clause Ci is a set of literals of the clause-formula ci, i.e.
Ci = {Li1 , Li2 , . . . , Limi

}. The negation L̄ of a literal L

is defined as L̄≡A, if L≡¬A (for some atomic formula
A), otherwise L̄≡¬L.

A clause is interpreted as the conjunction of its literals
and a matrix as the disjunction of its clauses. Therefore a
clause is true, iff all its literals are true. A matrix is true,
iff at least one of its clauses is true. A clause/matrix
which is not true is false. A matrix M is valid , iff the
corresponding formula F is valid.
Lemma: The empty clause is true; a matrix containing
the empty clause is true; the empty matrix is false.

input: matrix M representing a formula F in clausal
form

output: true, if F is valid; false otherwise

begin DP(M)
if M = {} then return false;
if {}∈M then return true;
if {L}∈M
then return DP(ReduceL̄(M)); /* UNIT */

for all L∈ litM with L̄ 6 ∈ litM

do M :=ReduceL̄(M); /* PURE */
select L∈ litM ;
if DP(ReduceL(M))=true and /* splitting */

DP(ReduceL̄(M))=true
then return true else return false;

end DP.

Figure 1: The Davis-Putnam procedure DP

We can represent a matrix M as a graphical “matrix”,
if we place its clauses C1, . . . , Cn side by side and the

1Since we want to decide the validity of the given formula
we use the “positive representation”. Of course using con-
junctive normal form and checking the satisfiability is also
possible, since a formula F is valid iff ¬F is not satisfiable.

literals Li1 , . . . , Limi
of each clause Ci one upon the other

(see figure 3).
The Davis-Putnam procedure is defined in figure 1

(where L denotes a literal and litM is the set containing
all literals of M). Calling DP(M) returns true, if the
matrix M is valid, otherwise it returns false.

If the matrix M is an empty set or contains an empty
clause, false and true are returned, respectively. Other-
wise an literal occuring in M is selected and true/false
is assigned to it respectively (“splitting”). Only if both
resulting matrices are valid, the matrix M is valid.

begin ReduceL(M)
M1:={C|C ∈M and L̄ 6∈C}; /* clause elimination */
M2:={C \ {L}|C ∈M1}; /* literal deletion */
return M2;

end Reduce.

Figure 2: The Procedure Reduce

Assigning true to all literals L (and false to L̄) in the
matrix M and returning the resulting simplified matrix
is performed by the procedure ReduceL(M) (see figure
2). This is done by the following two steps:

1. All clauses containing the negation L̄ of L (and thus
the truth value false) are deleted from M , since a
clause (conjunction) containing a false literal is false
and can be removed.

2. The literal L is deleted from all remaining clauses,
since a true literal in a conjunction can be removed.

According to [2] we call the first step “clause elimina-
tion” and the second step “literal deletion”. Both steps
are illustrated in figure 3 (where L is true and L̄ is false).


 .. C′




.

.

.
L̄

.

.

.


 C′′ ..


 ;

[
.. C′ C′′ ..

]




. . .




.

.

.

L′

L

L′′
.
.
.




. . .




;


 . . .




.

.

.
L′
L′′
.
.
.


 . . .




Figure 3: Clause Elimination and Literal Deletion

In the given procedure the unit clause rule (UNIT)
and the pure literal rule (PURE) are additionally per-
formed (see figure 1). The unit rule avoids the splitting
of the matrix M , if there is a unit clause in M , i.e. a
clause containing only one literal. The pure rule does
delete all clauses containing the literal L from M , if the
literal L̄ does not occur in M . Both reductions are not
necessary to obtain a correct and complete proof proce-
dure, but they are good optimization techniques.

3 A Non-Clausal Davis-Putnam
Procedure

To apply the ideas of the last section to arbitrary formu-
lae we have to generalize the corresponding definitions
and concepts.

The syntax of (arbitrary) formulae is defined induc-
tively by the following definition.

Definition: 1. An atomic formula A (i.e. a proposi-
tional variable) is a formula. 2. If F and G are for-
mulae then (¬F), (F∧G), (F∨G) and (F ⇒ G) are
also formulae, with the logical connectives “¬” (nega-
tion), “∧” (conjunction), “∨” (disjunction) and “⇒”
(implication).2

Within the clausal-based Davis-Putnam procedure a
formula in clausal form is represented by a matrix, which
is a set of clauses. To get a similar representation for
arbitrary formulae, we have to generalize the definition
of a matrix, i.e. to consider nested matrices. For this
reason we introduce the notion of signed formulae.

Definition: A signed formula is a tuple (F, p) consisting
of a formula F and a polarity p, where p∈ {0, 1}.

The matrix of a signed formula is defined inductively.

Definition: The matrix of a signed formula (F, p)
is defined by the following table. {MG}, {MH} and
{MG,MH} are called clauses.

(F, p) matrix of (F, p)
MG/MH is the
matrix of

(A, 0), A is atomic {{A}} –/–
(A, 1), A is atomic {{¬A}} –/–
((¬G), p) MG (G, 1−p) / –
((G∧H), 1) {{MG}, {MH}} (G, 1) / (H, 1)
((G∨H), 0) {{MG}, {MH}} (G, 0) / (H, 0)
((G ⇒ H), 0) {{MG}, {MH}} (G, 1) / (H, 0)
((G∧H), 0) {{MG, MH}} (G, 0) / (H, 0)
((G∨H), 1) {{MG, MH}} (G, 1) / (H, 1)
((G ⇒ H), 1) {{MG, MH}} (G, 0) / (H, 1)

Using the previous definition we are now able to define
the matrix of (arbitrary) formulae.

Definition: The matrix of a formula F is the matrix of
the signed formula (F, 0).

Remark: Matrices of the form M = {. . . , {{C1, ..., Cn

}}, . . .} can be simplified to M ′= {. . . , C1, . . . , Cn, . . .}
where C1, .., Cn are clauses. Clauses of the form C =
{. . . , {{M1, . . . , Mm}}, . . .} can be simplified to C ′=
{. . . , M1, . . . , Mm, . . .} where M1, .., Mm are matrices.

In the clausal-based Davis-Putnam procedure we re-
gard a matrix as a set of clauses, where each clause is a
set of literals. In our non-clausal approach a clause is a
set of matrices, where each matrix is either a literal or
a set of clauses. Again we can represent a matrix M as
a “graphical” matrix, if we place its clauses side by side
and the matrices of each clause one upon the other.

2Equivalence “⇔” can be defined as follows: F ⇔ G iff
(F ⇒ G)∧(G ⇒ F).

Example: Consider the formula Fa ≡ (((A∧(A ⇒
(B∧¬B)))∨(C∧D)) ⇒ (C∧D)). The (simplified) matrix
of Fa is given in figure 4.







[
[¬A]

[
A[

[¬B] [B]
]
]]

[
[¬C] [¬D]

]




[
C
D

]



Figure 4: The Matrix of Fa

Within the so-called negational normal form, a clause
is interpreted as the conjunction of its matrices and a
non-atomic matrix is interpreted as the disjunction of
its clauses. Again a clause is true, iff all its elements
are true. A matrix is true, iff at least one of its clauses
is true. A clause/matrix which is not true is false. A
matrix is valid , iff the corresponding formula F is valid.
Lemma: The empty matrix {} is false, the empty clause
{} is true. A matrix {. . . , {}, . . .} containing the empty
clause is true. A clause {. . . , {}, . . .} containing the
empty matrix is false.

The non-clausal Davis-Putnam procedure is defined
in figure 5 (where L denotes a literal and litM is the set
containing all literals of M). Calling ncDP(M) returns
true, if the matrix M is valid, otherwise it returns false.

input: matrix M representing an arbitrary formula F
output: true, if F is valid; false otherwise
begin ncDP(M)
if M = {} then return false;
if {}∈M then return true;
if {L}∈M
then return ncDP(MReduceL̄(M)); /* UNIT */

for all L∈ litM with L̄ 6 ∈ litM

do M :=MReduceL̄(M); /* PURE */
if M={{M1, .., Mn}, C1, .., Cm} and n≥2
then for all i∈ {1, .., n} /* beta- */

do ncDP({{Mi}, C1, .., Cm}); /* splitting */
select L∈ litM ;
if ncDP(MReduceL(M))=true and /* splitting */

ncDP(MReduceL̄(M))=true
then return true else return false;

end ncDP.

Figure 5: The Non-Clausal Davis-Putnam Procedure

If the matrix M is an empty set or contains an empty
clause, false and true are returned, respectively. Other-
wise a literal L occuring in M is selected and true/false
is assigned to it respectively(“splitting”). Only if both
resulting matrices are valid, the matrix M is valid.

Assigning true to all literals L (and false to L̄) in
the matrix M and returning the resulting simplified ma-
trix is performed by the procedures MReduceL(M) and
CReduceL(C) (see figure 6).3

MReduceL(M) performs this assignment for a ma-
trix M . If the regarded matrix is the literal L or L̄,

3Notice the similarity between these two procedures.

begin MReduceL(M)
if M=L then return {{}}; /* assign true */
if M=L̄ then return {}; /* assign false */
if M is a literal then return M ;
M1 := {C ′|C ′ =CReduceL(C) and C ∈M};
if {}∈M1 then return {{}}; /* matrix elimination */
return {C|C ∈M1 and C 6= {{}} }; /* simplify */

end MReduce.

begin CReduceL(C)
C1 := {M ′|M ′ =MReduceL(M) and M ∈C};
if {}∈C1 then return {{}}; /* clause elimination */
return {M |M ∈C1 and M 6= {{}} }; /* simplify */

end CReduce.

Figure 6: The Procedures MReduce and CReduce

the truth-values true (i.e. {{}}) and false (i.e. {}) are
returned respectively. Otherwise the assignments of its
clauses are evaluated. If there is a true clause (i.e. {}),
the whole matrix is deleted and true (i.e. {{}}) is re-
turned. We call this step “matrix elimination”. Notice
that the literal deletion in the clausal-based procedure is
a special case of the matrix elimination described here.

CReduceL(C) performs the assignment of true to the
literal L for a clause C, i.e. the assignments of its ma-
trices are evaluated. If there is a false matrix (i.e. {}),
the whole clause is deleted and false (i.e. {{}}) is re-
turned. Like in the clausal-based procedure we call this
step “clause elimination”.




.

.

.
M ′

[
. . . [] . . .

]

M ′′
.
.
.




;




.

.

.
M ′
M ′′

.

.

.





 .. C′




.

.

.
[]

.

.

.


 C′′ ..


 ;

[
.. C′ C′′ ..

]

Figure 7: Matrix Elimination and Clause Elimination

Beside the usual unit clause rule and pure literal rule
(see previous section) another splitting rule is applied.
The beta splitting rule (see figure 8) is justified by the
following corollary, which is not difficult to prove.

Lemma: A matrix {{M1, .., Mm}, C1, .., Cn} is valid, iff
{{Mi}, C1, .., Cn} is valid for all i∈ {1, .., ,m}.

4 An Implementation

The implementation of our non-clausal proof procedure
is written in Prolog. This makes it possible to get a
compact code which can easily be modified.

[[
M1

.

.

.
Mm

]
C1 .. Cn

] ↗
[

[M1] C1 .. Cn

]
.
.
.

.

.

.

↘
[

[Mm] C1 .. Cn

]

Figure 8: The Beta Splitting Rule

The sets describing matrices and clauses are repre-
sented as Prolog lists, where literals are represented
as (possibly negated) atoms. For example the ma-
trix {{¬A}, {A, {{¬B}, {B}}}} is represented as the list
[[-A],[A,[[-B],[B]]]].

The predicate dp(M) actually implements our non-
clausal proof procedure ncDP(M). It succeeds, if the
matrix M is valid, otherwise it fails.
%%% dp (implements the non-clausal proof procedure)

dp([]) :- !, fail. % matrix is NOT valid
dp(M) :- member([],M), !. % matrix is valid

dp(M) :- % unit rule
member([L],M), (atom(L),N= -L ; -N=L), !,
reduce(M,N,L,M1), dp(M1).

dp([[[C1|M1],[C2|M2]|C]|M]) :- !, % beta-splitting
dp([[[C1|M1]]|M]), dp([[[C2|M2]]|M]), dp([C|M]).

dp(M) :- % splitting
selLit(M,L,N),
reduce(M,L,N,M1), dp(M1), % true -> L
reduce(M,N,L,M2), dp(M2). % false -> L

The following predicate reduce(M,L,N,M1) imple-
ments the procedure MReduceL(M) as well as the pro-
cedure CReduceL(C). Thus M can be a matrix as well
as a clause. This predicate returns the simplified ma-
trix/clause M1 obtained by assigning true (i.e. [[]]) to
each literal L (L) and false (i.e. []) to the negation of L
(N) in the matrix/clause M.4

%%% reduce (implements MReduce/CReduce procedure)

reduce(L,L,_,[[]]) :- !. % assign true
reduce(N,_,N,[]) :- !. % assign false

reduce([C|M],L,N,M1) :- !,
reduce(C,L,N,C1), % eval. clause/matrix
(C1=[] -> M1=[[]]; % mat./cl. elimination

C1=[[]] -> reduce(M,L,N,M1); % simplify
reduce(M,L,N,M2), % eval. clauses/matrices

(M2=[[]] -> M1=[[]]; % mat./cl. elimination
M2=[],C1=[M3] -> M1=M3; M1=[C1|M2])).

reduce(M,_,_,M). % M is a literal

The predicate selLit(M,L,N) performs the selection
of a literal in the matrix M. The present implementation
just returns the first literal L in M together with its nega-
tion N.

4At first it might be a bit confusing to apply the predi-
cate reduce to matrices as well as to clauses. A look at the
definitions of the corresponding procedures should make this
technique clear, however.

%%% selLit (select a literal)

selLit([M|_],L,N) :- !, selLit(M,L,N).
selLit(-N,-N,N) :- !. % negative literal
selLit(L,L,-L). % positive literal

Notice that the described Prolog implementation is
of course not as fast as an optimized C or Lisp imple-
mentation. As already mentioned our aim was not to
implement a “state-of-the-art” prover, but to write a
compact and readable implementation of our non-clausal
proof procedure to allow further investigations (e.g. the
comparison to a clausal-based Davis Putnam prover pre-
sented in the next section). It should be a minor problem
to translate the given Prolog code into a functional or an
imperative programming language.

5 Comparing Clausal and Non-Clausal
Proof Procedure

In the following we will compare the performance of our
non-clausal proof procedure to a clausal-based Davis-
Putnam prover.

For this purpose we use the Prolog implementation of
the previous section5 and the Davis-Putnam prover of
the KoMeT system [Bibel et al., 1994]. KoMeT is also
implemented in Prolog thus making the comparison fair.
Moreover it is one of the few theorem provers providing
not only the usual translation into clausal form, but also
a definitional (or structure-preserving) translation [Eder,
1992; Plaisted and Greenbaum, 1986].

In the following tables the first column contains the
name of the problem, the next two columns contain the
times used by the Davis-Putnam Prover of KoMeT with
the standard translation (“DPnormal”) as well as the
definitional translation (“DPdefini”), and the last col-
umn contains the time used by our own prover “ncDP”.
Times are measured on a SUN SPARC10 with ECLiPSe
Prolog and are given in seconds, where “>600” means
that no proof was found within 600 seconds.

We start with formulae which are in clausal form,
namely the “complete formulae” com n (containing n
distinct atomic formulae) and the “pigeonhole” formulae
pigeonn (n+1 pigeon into n holes).

name DPnormal DPdefini ncDP
com8 3.30 59.45 1.38
com9 7.81 244.67 4.05
com10 19.10 >600 11.73
pigeon4 0.75 1.68 0.53
pigeon5 5.80 5.58 4.00
pigeon6 80.10 26.28 33.21

The following formulae ft n are of the form ¬¬(p1 ⇔
(p2 ⇔ . . . (pn−1 ⇔ pn)..) ⇔ (..(p1 ⇔ p2) ⇔ p3) . . . ⇔
pn), the formulae samp n are of the form ((p1 ⇒ p1)
∧(p2 ⇒ p2)∧ . . .∧(pn ⇒ pn)).

5We have to add a few lines of code which build up the
matrix for a given formula. We also apply the pure literal
rule once at the beginning of the proof process.

name DPnormal DPdefini ncDP
ft6 31.69 0.72 0.43
ft8 >600 2.72 2.46
ft10 >600 13.60 13.63
samp10 64.36 2.34 <0.01
samp12 451.89 9.85 0.01
samp14 >600 46.52 0.02

In [Korn and Kreitz, 1997] the intuitionistic validity
of a propositional formula F is decided by translating it
into a formula T (F) which is classically valid, iff F is in-
tuitionistically valid. The resulting formulae are strongly
in non-clausal form. We have applied this translation to
the (propositional) formulae in [Pelletier, 1986] to decide,
whether they are intuitionistically valid.6 The resulting
formulae are ipell n where n is the problem’s number
w.r.t. [Pelletier, 1986].

The formulae dan1, dan2 and dan3 are the correspond-
ing translations of the formulae ((a ⇒ b) ⇒ c)∧((d ⇒
e) ⇒ b)∧((g ⇒ h) ⇒ e) ⇒ c, ((a ⇒ b) ⇒ c)∧((d ⇒ e) ⇒
b)∧((g ⇒ a) ⇒ e) ⇒ c and ((p ⇔ q) ⇔ r) ⇔ (p ⇔ (q ⇔
r)), respectively.

The additional character after the name of each for-
mula indicates if it is valid(“t”) or not(“f”).

name DPnormal DPdefini ncDP
ipell1(f) 0.50 0.42 0.01
ipell4(f) 0.60 0.40 0.01
ipell10(t) 0.28 0.53 0.05
ipell12(f) >600 81.18 2.29
ipell14(f) 1.88 0.60 <0.01
ipell17(f) 10.92 1.51 <0.01
ipell71a(t) 0.21 0.18 <0.01
ipell71b(f) 5.90 0.72 0.05
ipell72a(t) 0.28 0.77 0.11
ipell72b(t) 0.83 2.05 0.56
dan1(f) >600 >600 0.86
dan2(t) >600 >600 0.76
dan3(f) >600 80.18 2.31

These experimental results show that the translation
to clausal form often yields formulae which are almost
impossible to prove, in particular in the case of the usual
translation to clausal form.

There are three main advantages of the non-clausal
proof procedure:

1. Avoiding the translation into any clausal form. This
translation is sometimes not feasible or the resulting
formula is too large to find a proof. If we use the
definitional translation additional atomic formulae
are introduced which increase the complexity of the
problem.

2. Application of matrix elimination steps. This will
lead to formulae which are smaller w.r.t. the corre-
sponding clausal form. Consider, for example, the
following matrix (where P , Q, R are literals and M
is a matrix) and its partial clausal form:[[

[[P] [Q] [R]]
M

]] [[
P
M

] [
Q
M

] [
R
M

]]

In the clausal-based procedure the assignment of
true to the literal R will only delete the literal R

6In the following table only the more difficult formulae are
considered. For all other formulae the proof took less than
0.5 seconds for each prover.

(literal deletion, see section 2). In the non-clausal
procedure the whole matrix [[P] [Q] [R]] will
be deleted (matrix elimination, see section 3) which
yields the matrix M . This means that some addi-
tional proof steps have to be performed which are
not necessary in the non-clausal procedure.

3. Application of the beta splitting rule. Especially in
the case of formulae which represent independent
problems, this is an essential technique (see samp n
examples above). “Beta splitting” can shorten
proofs which otherwise would increase exponentially
w.r.t. the length of the input formula, so that they
will become linear.

6 Conclusion
We have presented a non-clausal decision procedure
which is a generalization of the usual Davis-Putnam pro-
cedure. Due to the representation of formulae by matri-
ces we get a compact description of the corresponding
procedure. A Prolog implementation is provided showing
that a non-clausal proof procedure can be implemented
in a short and easy way. Due to the compact code the
program can easily be modified and adapted for special
purposes and applications.

We have compared our non-clausal proof procedure
to a clausal-based Davis-Putnam procedure. To this
end we have provided some experimental results show-
ing that the usual translation into clausal-form as well as
the definitional translation can spoil the proof process.
Whereas the usual translation increases the size of the
formulae considerably, the definitional translation intro-
duces new atomic formulae. The compact representation
of the non-clausal matrices is a competitive alternative.
Operating on such matrices makes it possible to get truly
shorter proofs, due to the application of matrix elimina-
tion steps and the beta splitting rule.

It will not make much sense to apply our procedure
to problems which are already formulated in clausal
form. For such problems (like n-Sat for n≥3) special-
ized (clausal-based) proof procedures are more suitable.
For problems which are formulated in non-clausal form
(like our translated formulae which are used to decide
the validity in intuitionistic propositional logic) the non-
clausal approach often is more useful.

Of course, there is still room for further research on
this co-NP complete [Cook, 1971] problem. To improve
the performance of our procedure it has to be imple-
mented in a more machine-oriented programming lan-
guage (like C). Furthermore there are many optimiza-
tion techniques for clausal provers which might also be
applicable to the non-clausal case (for example the selec-
tion of the “splitting literal”). On the other hand such a
procedure should be compared to other (complete) proof
methods, e.g. BDDs (see [Uribe and Stickel, 1994]).

Acknowledgments
I would like to thank Daniel Korn for providing me with
his translation (and many non-clausal formulae) and for

helping me to put the text into a readable form. I also
would like to thank Thomas Rath for providing me with
the KoMeT system.

References
[Bibel et al., 1994] W. Bibel, S. Brüning, U. Egly, and

T. Rath. Komet. In Alan Bundy, editor, Proceedings
of the 12th CADE, volume 814 of Lecture Notes in
Artificial Intelligence, pages 783–787. Springer Verlag,
Berlin, Heidelberg, New-York, 1994.

[Cook, 1971] S. A. Cook. The complexity of theorem-
proving procedures. In Proceedings of 3rd Annual
ACM Symposium on the Theory of Computing, pages
151–158, 1971.

[Crawford and Auton, 1993] J. Crawford and L. Auton.
Experimental results on the crossover point in satisfi-
ability problems. In Proceedings 11th National Con-
ference on AI, pages 21–27, 1993.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A
computing procedure for quantification theory. Jour-
nal of the Association for Computing Machinery,
7:201–215, 1960.

[Davis et al., 1962] M. Davis, G. Logemann, and
D. Loveland. A machine program for theorem-proving.
Communications of the Association for Computing
Machinery, 5:394–397, 1962.

[Eder, 1992] E. Eder. Relative Complexities of First Or-
der Calculi. Vieweg Verlag, 1992.

[Freeman, 1995] J. Freeman. Improvements to Propo-
sitional Satisfiability Search Algorithms. PhD thesis,
University of Pennsylvania, 1995.

[Korn and Kreitz, 1997] D. Korn and C. Kreitz. Effi-
ciently deciding intuitionistic propositional logic via
translation into classical logic. In Proceedings of the
14th CADE, Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Heidelberg, New-York, 1997.

[Li, 1996] C. Li. Exploiting yet more the power of unit
clause propagation to solve the 3-sat problem. In Pro-
ceedings ECAI’96 Workshop on Advances in Proposi-
tional Deduction, pages 11–16, 1996.

[Pelletier, 1986] F. Pelletier. Seventy-five problems for
testing automatic theorem proving. Journal of Auto-
mated Reasoning, 2:191–216, 1986.

[Plaisted and Greenbaum, 1986]
D. Plaisted and S. Greenbaum. A structure-preserving
clause form translation. Journal of Symbolic Compu-
tation, 2:293–304, 1986.

[Uribe and Stickel, 1994] T. Uribe and M. Stickel. Or-
dered binary decision diagrams and the davis-putnam
procedure. In J.-P. Jouannaud, editor, Proceedings 1st
International Conference on Constraints in Computa-
tional Logics, volume 845 of Lecture Notes in Com-
puter Science, pages 34–49. Springer Verlag, Berlin,
Heidelberg, New-York, 1994.

[Zhang, 1993] H. Zhang. A decision procedure for propo-
sitional logic. Association for Automated Reasoning
Newsletter, 22:1–3, 1993.

