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Abstract. This paper introduces the full versions of the non-clausal connection
provers nanoCoP for first-order classical logic, nanoCoP-i for first-order intu-
itionistic logic and nanoCoP-M for several first-order multimodal logics. The
enhancements added to the core provers include several techniques to improve
performance and usability, such as a strategy scheduling and the output of a de-
tailed non-clausal connection proof for all covered logics. Experimental evalua-
tions for all provers show the effectiveness of the integrated optimizations.

1 Introduction

The non-clausal connection calculus for classical logic [18] generalizes the clausal
connection calculus [3, 4, 24] to arbitrary first-order formulae. By directly dealing with
non-clausal formulae, a translation into a (disjunctive or conjunctive) clausal form can
be avoided. Instead, the structure of the original input formula is preserved throughout
the proof search. The non-clausal calculus combines the advantages of more natural
(non-clausal) sequent and tableau calculi with the more systematic and goal-oriented
proof search of connection calculi. Recently, the non-clausal connection calculus has
been adapted and extended to first-order intuitionistic logic and several first-order modal
logics [22]. This has been achieved by adding prefixes and a specialized prefix unifica-
tion algorithm that captures the Kripke semantics of these non-classical logics.

Automated theorem provers that are based on these non-clausal calculi have been
introduced as well: the nanoCoP (= natural non-clausal Connection Prover) series of
provers for classical logic [20, 21], first-order intuitionistic logic and several first-order
modal logics [22]. While already the basic implementations of the non-clausal core cal-
culi show a decent performance, these basic provers were missing important features
in terms of performance and usability, e.g., output of readable connection proofs and
further proof search optimizations, such as strategy scheduling, a technique that con-
secutively tries a set of different strategies when searching for a proof.

After a brief introduction of the non-clausal connection calculi (Section 2), the pa-
per presents the most recent versions of the non-clausal connection provers nanoCoP,
nanoCoP-i and nanoCoP-M together with the (minimalistic) source code of the Pro-
log core prover (Section 3). The main enhancements are the integration of several lean
proof search optimizations, a strategy scheduling, the output of readable connection
proofs, the extension of nanoCoP-M to multimodal logics, and a better support to run
the provers on different Prolog platforms. The paper also presents a comprehensive
practical evaluation of all provers on the standard problem libraries (Section 4).
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2 Non-clausal Connection Calculi

A (first-order) formula (denoted by F,G,H) is built up from atomic formulae, the con-
nectives ¬, ∧, ∨, ⇒, and the standard first-order quantifiers ∀ and ∃. A (first-order)
modal formula might also include the modal operators 2 and 3. An atomic formula
(denoted by A) is built up from predicate symbols (P,Q), function symbols ( f ,g) and
term variables (x,y). A literal L has the form A or ¬A.

In the clausal connection calculus a matrix is a set of clauses, where a clause is a
set of literals. The non-clausal connection calculus works on non-clausal matrices, in
which a matrix M is a set of clauses and a clause C is a set of literals L and (sub)matrices.
It can be seen as a representation of a formula in negation normal form.

For a formula F and polarity pol ∈ {0,1}, the classical non-clausal matrix M(F pol)
of F pol is defined inductively according to Table 1 ( : p and the last two lines are to be
ignored). x∗ is a new term variable, t∗ is the Skolem term f ∗(x1, . . . ,xn) in which f ∗ is a
new function symbol and x1, . . . ,xn are all free variables in (∀xG)0 : p or (∃xG)1 : p. The
(classical) non-clausal matrix M(F) of F is the classical non-clausal matrix M(F0).

In the graphical representation of a non-clausal matrix, its clauses are arranged hori-
zontally, its literals and matrices are arranged vertically. A connection is a set {A1

0,A2
1}

of literals with the same predicate symbol but different polarities. A term substitution
σT assigns terms to variables. A connection is σT -complementary iff σT (A1) = σT (A2).

The axiom and the four rules of the non-clausal connection calculus are given in
Figure 1 (again, : p1 and : p2 are to be ignored). Compared to the formal clausal con-
nection calculus [23], the extension rule is restricted to certain extension clauses and a
decomposition rule is added that splits subgoal clauses; see [18, 20] for details.

A clause C in a matrix M is an extension clause (e-clause) of M with respect to a
set of literals Path iff either (a) C contains a literal of path, or (b) C is α-related to
(i.e. occurs besides) all literals of path occurring in M, and if C has a parent clause, it
contains a literal of path. In the clause β -clauseL2(C2), the literal L2 and all clauses that
are α-related to (occur besides) L2 are deleted from C2, as these clauses do not need to
be considered in the new subgoal clause in the premise of the extension rule. A copy
of the clause C in the matrix M is made by renaming all free variables in C. M[C1\C2]
denotes the matrix M, in which the clause C1 is replaced by the clause C2.

Table 1. The definition of the (prefixed) non-clausal matrix for classical and modal logic

type F pol : p M(F pol : p)
atomic A0 : p {{A0 : p}}
α (G∧H)1 : p {{M(G1 : p)}},{{M(H1 : p)}}

(G∨H)0 : p {{M(G0 : p)}},{{M(H0 : p)}}
(G⇒ H)0:p {{M(G1 : p)}},{{M(H0 : p)}}

β (G∧H)0 : p {{M(G0 : p),M(H0 : p)}}
(G∨H)1 : p {{M(G1 : p),M(H1 : p)}}
(G⇒ H)1:p {{M(G0 : p),M(H1 : p)}}

ν (2G)1 : p M(G1 : pV ∗)
(3G)0 : p M(G0 : pV ∗)

type F pol : p M(F pol : p)
atomic A1 : p {{A1 : p}}
α (¬G)0 : p M(G1 : p)

(¬G)1 : p M(G0 : p)
γ (∀xG)1 : p M(G[x\x∗]1 : p)

(∃xG)0 : p M(G[x\x∗]0 : p)
δ (∀xG)0 : p M(G[x\t∗]0 : p)

(∃xG)1 : p M(G[x\t∗]1 : p)
π (2G)0 : p M(G0 : pa∗)

(3G)1 : p M(G1 : pa∗)
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Axiom (A)
{},M,Path

Start (S)
C2,M,{}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2: p2}

C∪{L1 : p1},M,Path∪{L2 : p2}
and {L1:p1,L2:p2} is σ -complementary

Extension (E)
C3,M[C1\C2],Path∪{L1 : p1} C,M,Path

C∪{L1: p1},M,Path

and C3:=β -clauseL2(C2), C2 is copy of C1, C1 is e-clause of M wrt.
Path∪{L1 : p1}, C2 contains L2 : p2, {L1:p1,L2:p2} is σ -complementary

Decomposition (D)
C∪C1,M,Path

C∪{M1},M,Path
and C1∈M1

Fig. 1. The non-clausal connection calculus for classical, intuitionistic and modal logic

The calculus works on tuples “C,M,Path”, where M is a non-clausal matrix, C is
a (subgoal) clause or ε and (the active) path is a set of literals or ε . The rigid σT is
calculated by using term unification whenever a connection is identified. A non-clausal
connection proof of M is a proof of ε,M,ε in the non-clausal connection calculus.

For intuitionistic and modal logic, the non-clausal matrix and the calculus are ex-
tended by prefixes, representing world paths in the Kripke semantics; see [22, 30, 31].
A prefix p is a string consisting of variables (V,W ) and constants (a) and assigned to
each literal. The modal non-clausal matrix M(F pol :p) of a prefixed formula F pol :p is
defined according to Table 1. V ∗ is a new prefix variable, a∗ is a prefix constant of the
form f ∗(x1, . . . ,xn) in which f ∗ is a new function symbol and x1, . . . ,xn are all free term
and prefix variables in (2G)0 : p or (3G)1 : p. The modal non-clausal matrix M(F) of
F is the modal non-clausal matrix M(F0 :ε); see [22] for the intuitionistic case.

A prefix substitution σP assigns strings to prefix variables and is calculated by a
prefix unification that depends on the specific non-classical logic. In intuitionistic and
modal logic, a connection {L1:p1,L2:p2} is σ -complementary iff both, its literals and
prefixes can be unified under a combined substitution σ = (σT ,σP), i.e. additionally
σP(p1) = σP(p2) must hold. A non-clausal connection proof of M is a proof of ε,M,ε
in the calculus of Figure 1 (with the underlined text included) with an admissible σ [22].

Example 1. The formula P(a)∧ (∀y(P(y)⇒ P(g(y)))∨¬(2Q⇒3Q))⇒ P(g(g(a)))
has the following (modal) non-clausal matrix (empty prefix strings are not shown):

{{P(a)1},{{{P(y)0,P(g(y))1}},{{Q1 : V},{Q0 : W}}},{P(g(g(a)))0}} .
It has the following graphical representation and (graphical) connection proof with the
substitutions σT (y) = a, σT (y′) = g(a) and σP(V ) =W : literals of each connection are
connected with a line. A clausal proof would need eleven instead of four connections.

[P(a)1]

[[

P(y)0

P(g(y))1

] copy︷ ︸︸ ︷[
P(y′)0

P(g(y′))1

]]
[ [

Q1 : V
][

Q0 : W
] ]

 [P(g(g(a)))0]

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3 The Implementations

nanoCoP, nanoCoP-i and nanoCoP-M are theorem provers for first-order classical
logic with equality, first-order intuitionistic logic with equality and several first-order
modal logics, respectively.1 They are very compact Prolog implementations of the basic
non-clausal connection calculi extended by a few basic but effective optimizations.

3.1 Non-clausal Matrix

In the first step, the input formula F is translated into a non-clausal matrix M (see
Table 1). Every (sub-)clause (I,V,FV ) :C and submatrix J :M are marked with unique
indices I and J, sets V of (free) term and prefix variables that are newly introduced in C
and sets FV including pairs x : pre(x) of free term variables and their prefixes, necessary
to check if σP is admissible. In Prolog, literals with polarity 1 are marked with “-”.
In the second step, for every literal Lit in M the fact lit(Lit,ClaB,ClaC,Grnd) is
asserted into Prolog’s database where ClaC∈M is the clause in which Lit occurs, ClaB
is β -clauseLit(ClaC), Grnd is g iff the smallest clause in which Lit occurs is ground.

Example 2. The (modal) formula from Example 1 is expressed in nanoCoP syntax as
( p(a) , ( all Y: (p(Y) => p(g(Y)) ) ; ~ (# q => * q) ) => p(g(g(a))) )

and is translated into the following (modal) non-clausal matrix
[ (2^K)^[]^[]: [ -p(a): -[] ],

(4^K)^[]^[]: [ 5^K: [ (6^K)^[Y]^[Y:[]]: [ p(Y):[], -p(g(Y)): -[] ] ],
12^K: [ (13^K)^[V]^[]: [ -q: -[V] ], (16^K)^[W]^[]: [ q:[W] ] ] ],

(18^K)^[]^[]: [ p(g(g(a))):[] ] ]

in which V and W are the prefix variables, the variable K is used to enumerate clauses.

3.2 nanoCoP for Classial Logic

The (minimalistic) source code of the nanoCoP core prover is shown in Figure 2. The
underlined code is necessary only for the non-classical provers and is to be ignored for
the (classical) nanoCoP prover. The predicate prove(M,U,S,X) implements the start
rule (lines 1–5). M is the matrix generated in the preprocessing step, U is the maximum
size of the active path used for iterative deepening (lines 6–7), S specifies a strategy (see
Section 3.5), and X contains the returned (compact) non-clausal connection proof.

The predicate prove(Cla,Mat,Path,T,U,Q,S,X) implements axiom (line 8), de-
composition rule (lines 9–11), reduction rule (lines 12–15, 20), and extension rule (lines
12–13, 16–20) of the calculus in Figure 1. It succeeds iff there is a proof for the tu-
ple “Cla, Mat, Path” with |Path|< U. The predicate pe calculates an appropriate ex-
tension clause (lines 21–24). σ is stored implicitly by Prolog. Prolog’s member and
append predicates are abbreviated by m and a, respectively (line 25). The predicate
posC(C,F) (invoked in line 3 and 4) calculates a positive (start) clause F of the clause
C. It is implemented in seven lines of (non-minimalistic) code and is the only predicate
of the core prover that is not included in the code in Figure 2. The nanoCoP website
includes a more readable version of the full source code.

1 Provers available under the GNU General Public License at http://leancop.de/nanocop/,
http://leancop.de/nanocop-i/ , and http://leancop.de/nanocop-m/ .
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(1)
(2)
(3)
(4)
(5)

(6)
(7)

(8)

(9)
(10)
(11)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

(21)
(22)
(23)
(24)

(25)

prove(M,U,S,[(I^0)^V:X]) :-

( m(scut,S) -> ( a([(I^0)^V^W:F|_],[!|_],M) ; m((I^0)^V^W:C,M),

posC(C,F) ) -> true ; ( a(Z,[!|_],M) -> m((I^0)^V^W:F,Z) ;

m((I^0)^V^W:C,M),posC(C,F) ) ), prove(F,M,[],[I^0],U,[],P,B,S,X),

a(B,W,D), domain_cond(D), prefix_unify(P).

prove(M,U,S,X) :- retract(p) -> ( m(comp(U),S) -> prove(M,1,[],X);

V is U+1, prove(M,V,S,X) ) ; m(comp(_),S) -> prove(M,1,[],X).

prove([],_,_,_,_,_,[],[],_,[]).

prove([J^K:M|C],H,P,T,U,Q,A,B,S,X) :- !, m(I^V^W:F,M),

prove(F,H,P,[I,J^K|T],U,Q,D,E,S,Y), prove(C,H,P,T,U,Q,N,O,S,Z),

a(N,D,A), a(W,E,R), a(O,R,B), X=[J^K:I^V:Y|Z].

prove([L:J|C],H,P,T,U,Q,P1,V1,S,X) :-

X=[L:J,I^V:[N:O|Y]|Z], \+ (m(A,[L:J|C]),m(B,P),A==B), (-N=L;-L=N)

-> ( m(R,Q), L:J==R, D=[], Y=[], I=l, V=[], O=J, P4=[], V4=[] ;

m(R:O,P), R=N, D=[], Y=[], I=r, V=[], \+ \+ prefix_unify([J=O]),

P4=[J=O], V4=[] ; lit(N:O,E,F,G), ( G=g -> true ; length(P,K),K<U

-> true ; \+ p -> assert(p), fail ), \+ \+ prefix_unify([J=O]),

pe(E,F,H,T,I^V^W:D,M), prove(D,M,[L:J|P],[I|T],U,Q,P2,V2,S,Y),

P4=[J=O|P2], a(V2,W,V4) ), ( m(cut,S) -> ! ; true ),

prove(C,H,P,T,U,[L:J|Q],P3,V3,S,Z), a(P4,P3,P1), a(V3,V4,V1).

pe((I^K)^V:E,N:C,H,T,D,M) :- a(A,[(I^L)^W:F|B],H), length(T,K),

( E=[J^K:[G]|_], m(J^L,T), V=W, C=[_:[R|_]|_], a(U,[J^L:Y|X],F),

pe(G,R,Y,T,D,Z), a(U,[J^L:Z|X],S), a(A,[(I^L)^W:S|B],M) ;

(\+m(I^L,T);V\==W) -> D=(I^K)^V:E, a(A,[N:C|B],M) ).

m(A,B) :- member(A,B). a(A,B,C) :- append(A,B,C).

Fig. 2. Source code of the nanoCoP, nanoCoP-i and nanoCoP-M core provers

3.3 nanoCoP-i for Intuitionistic Logic

For intuitionistic logic, prefixes are added to all literals in the non-clausal matrix (details
in [22]) and to the non-clausal connection calculus. For nanoCoP-i, the underlined text
in Figure 2 is added to the classical nanoCoP prover; no other changes are done.

A list P1 of prefix equations and a list V1 of term variables (with their prefixes)
are collected during the proof search and are added as arguments to the main predi-
cate prove(Cla,Mat,Path,T,U,Q,P1,V1,S,X). Two predicates need to be added to
the code: prefix_unify(P) implements the prefix unification and domain_cond(V)

checks whether σ is an admissible substitution.

3.4 nanoCoP-M for Multimodal Logics

For modal logic, prefixes are added to all literals in the non-clausal matrix (according
to Table 1) and to the non-clausal connection calculus. The nanoCoP-M core prover
shown in Figure 2 has the same source code as the intuitionistic nanoCoP-i prover.
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Again, prefix_unify(P) implements the prefix unification with respect to a spe-
cific modal logic and domain_cond(V) checks whether σ is an admissible substitu-
tion with respect to a specific domain condition. nanoCoP-M supports the modal logics
D, T, S4, and S5 with varying, cumulative and constant domain condition; terms are
considered rigid and local, the logical consequence relation is local [22, 31].

For the modal logics D and T the accessibility condition |σP(V )|=1 and |σP(V )|≤1,
respectively, has to hold for all prefix variables V . There is no such restriction for the
modal logic S4 and only the last prefix character is considered for the modal logic S5.

nanoCoP-M also supports heterogeneous multimodal logics. For multimodal logic,
an index can be added to the modal operators 2 and 3, i.e. modal operators from the
set {2i ,3i | i ∈ IN} are allowed. Modal operators with different indices can be assigned
to different modal logics. See the nanoCoP-M website for more details.

3.5 Proof Search Optimizations

Following the lean methodology, a few basic but effective techniques are carefully se-
lected and integrated into the nanoCoP, nanoCoP-i and nanoCoP-M provers.

Regularity and Lemmata. Regularity (line 13) and lemmata (line 14) are effective
techniques for pruning the search space in clausal connection calculi [10] and were
already included in the basic versions of the nanoCoP provers [20, 22].

Restricted Backtracking. Restricted backtracking is an effective (but incomplete)
technique to prune the search space in the (non-confluent) connection calculus [17].
Besides restricted backtracking for the extension and reduction rules (“cut”) (line 19),
restricted backtracking for the start rule (“scut”) (lines 2–3) is now integrated as well,
which cuts off backtracking over alternative start clauses in the connection calculus.

Conjecture Start Clauses. Conjecture start clauses (“conj”) restricts the start rule for
formulae of the form (A1∧ . . .∧An)⇒C to clauses of the conjecture C (line 2 and 3),
instead of the default positive clauses (line 3 and 4). This technique is in particular
effective for formulae with many axioms Ai. This approach is incomplete for formulae
with inconsistent/unsatisfiable axioms A1, . . . ,An and invalid conjecture C.

Reordering Clauses. Reordering clauses (“reo(I)”) is a technique to modify (in-
directly) the proof search order, which is in particular effective in combination with
restricted backtracking. For non-clausal calculi it is important to produce diverse clause
orders even for small sets of clauses, e.g., if a (sub)matrix contains only two or three
clauses. It is done in a preprocessing step using a pseudo-randomized shuffle algorithm.

Strategy Scheduling. Strategy scheduling is a very effective technique that uses a se-
quence of different strategies to prove a formula. A strategy is specified in the argument
S of the prove predicate. It is a list that contains a (possibly empty) subset of the options
{scut,cut,conj, reo(I),comp(J)}, which effect the proof search as follows:
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– scut: switches on restricted backtracking for start clauses,
– cut: switches on restricted backtracking for reduction/extension/lemma rule,
– conj: uses conjecture clauses as start clauses instead of positive clauses,
– reo(I) for I∈ IN: reorders the clauses I times before the proof search starts,
– comp(J) for J∈ IN: restarts the proof search using a complete search strategy, i.e.

without scut, cut, and conj, if the path limit U exceeds J (lines 6–7).

A fixed strategy scheduling (sequence) is implemented using a shell script that in-
vokes the Prolog prover. Comprehensive tests were performed in order to select a set
of 20 strategies for nanoCoP and 12 strategies for nanoCoP-i and nanoCoP-M, re-
spectively. The first three stategies used by nanoCoP, nanoCoP-i and nanoCoP-M are
[cut,comp(7)] / [reo(22),conj,cut] / [scut], [cut,comp(6)] / [scut] / [scut,cut],
and [cut,comp(6)] / [cut] / [reo(20),conj,cut], respectively. The empty (and com-
plete) strategy [] is the last one used by all three nanoCoP provers.

3.6 Proof Output

All three nanoCoP provers can output a detailed non-clausal connection proof. The
nanoCoP core provers return a very compact (and hardly readable) non-clausal connec-
tion proof that has been further optimized in terms of size and included proof informa-
tion. It is returned in the last argument X of the prove predicate in Figure 2.

Example 3. For the (modal) formula from Example 1 and its non-clausal (modal) ma-
trix given in Example 2, the nanoCoP-M core prover returns the following compact
(modal) non-clausal connection proof

[ (18^0)^[]: [ p(g(g(a))): [],
(4^1)^[]: [ -p(g(g(a))): -[], 5^1: (6^1)^[g(a)]: [ p(g(a)): [],

(6^4)^[a]: [ -p(g(a)): -[], p(a): [],
(2^5)^[]: [ -p(a): -[]] ] ],

12^1: (13^1)^[[V]]: [ -q: -[[V]],
(16^4)^[V]: [ q: [V] ] ] ] ] ]

in which the literals of the connections have been underlined. In the terms of the form
(I^K)^L:C, I and K are the index and the instance (number) of the clause C, respec-
tively, and L is a list that contains the substituted term and prefix variables.

Based on this returned compact proof, a detailed and more readable non-clausal con-
nection proof is reconstructed in a separate module. As non-clausal connection proofs
are closely related to proofs in Gentzen’s LK/LJ sequent calculi [8] and Schütte’s GS
calculus [5], they can (rather) easily be translated into LK/LJ/GS proofs.

4 Experimental Evaluation

The optimizations described in Section 3 were integrated into the nanoCoP 2.0 provers
and are evaluated on different benchmark libraries. All evaluations were conducted on
a 2.3 GHz Xeon system with 32 GB of RAM running Linux 2.6.32. If not stated other-
wise, ECLiPSe Prolog 5.10 was used for all provers implemented in Prolog.2

2 ECLiPSe Prolog 5.x is available at https://eclipseclp.org/Distribution/Builds/.
Newer versions of ECLiPSe Prolog are missing important features (e.g. the possibility to
switch on a global occurs check) and have a significantly lower performance.
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Table 2. Results on the first-order problems of the TPTP library

leanTAP leanCoP E nanoCoP nanoCoP nanoCoP nanoCoP
2.3 2.2 2.4 1.0 2.0 SWI 2.0 +leanCoP

proved 555 2541 4377 2055 2132 2500 2709
0 to 1sec. 520 1643 3152 1543 1325 1573 1590
1 to 10sec. 20 369 780 277 317 264 294

10 to 100sec. 15 529 445 235 490 663 825
refuted 0 67 510 133 132 133 133
total 555 2608 4887 2188 2264 2633 2842

nanoCoP. The classical nanoCoP prover was evaluated on all 8044 first-order (so-
called FOF) problems in the TPTP library v6.4.0 [29]. Table 2 shows the results of the
evaluation for a CPU time limit of 100 seconds. Besides nanoCoP 2.0, it includes the
following provers: the lean tableau prover leanTAP 2.3 [1], the superposition prover
E 2.4 [27] (using the options “--proof-object -s --satauto”), leanCoP 2.2 [17], and
nanoCoP 1.0 [20]. It also includes the results of nanoCoP running on SWI Prolog 7.6.4
and the combined results of nanoCoP 2.0 and leanCoP 2.2.

nanoCoP 2.0 proves 22% more problems than nanoCoP 1.0 and 350% more prob-
lems than leanTAP, the other lean prover that is based on a non-clausal (tableau) cal-
culus. E proves 75% more problems than nanoCoP 2.0. nanoCoP 2.0 performs signifi-
cantly better on ECLiPSe Prolog than on SWI Prolog. The numbers in the last column
indicate that nanoCoP 2.0 proves 168 problems that are not proven by leanCoP 2.2.

Optimizations. Table 3 shows the effectiveness of the different optimization tech-
niques implemented in nanoCoP 2.0 on all 8044 FOF problems in the TPTP library
v6.4.0 for a CPU time limit of 10 seconds. The following versions of nanoCoP are eval-
uated: a basic version without regularity and lemmata (“basic”), the standard version
using regularity and lemmata (i.e. strategy [ ]), a version with conjecture start clauses
([conj]), two versions with restricted backtracking ([scut] and [cut], respectively),
nanoCoP 1.0 (which uses the single strategy [cut,comp(6)]), a “reo” version with re-
ordering of clauses (using the strategy [reo(22),conj,cut]), and the full nanoCoP 2.0
prover using all of the described optimizations including strategy scheduling.

As different optimizations can be combined within the strategy scheduling, not only
the total number of proved problems is given, but also the number of new problems
proved compared to the “basic” or the standard nanoCoP version (using strategy [ ]).

Table 3. Evaluation of different optimization techniques

“basic” [ ] [conj] [scut] [cut] 1.0 “reo” 2.0
proved 1465 1516 1682 1598 1691 1820 1855 2079
new proved – 64 253 248 421 409 260 314

compared to – “basic” [ ] [ ] [ ] [ ] 1.0 1.0
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Table 4. Results on the first-order problems of the ILTP library

ileanTAP ileanCoP Slakje nanoCoP-i nanoCoP-i nanoCoP-i
1.17 1.2 2.14 1.0 2.0 +ileanCoP

proved 314 782 1019 764 839 848
0 to 1sec. 303 612 95 681 676 676
1 to 10sec. 7 51 367 44 47 51

10 to 100sec. 4 119 557 39 116 121
refuted 4 78 363 89 89 91

nanoCoP-i. Table 4 shows the results of the evaluation on all 2550 first-order prob-
lems in the ILTP library v1.1.2 [26] for a CPU time limit of 100 seconds. Included are
the provers ileanTAP 1.17, ileanCoP 1.2, Slakje 2.14, nanoCoP-i 1.0, nanoCoP-i 2.0
and the combined results of nanoCoP-i 2.0 and ileanCoP 1.2. ileanTAP [14] imple-
ments a prefixed free-variable tableau calculus and is written in Prolog; ileanCoP [15,
16] is a compact Prolog prover that implements the prefixed clausal connection calcu-
lus; Slakje [6] uses a prover for classical logic to search for a classical proof and the
GAPT system [7] to subsequently reconstruct an intuitionistic proof from the classical
one. These are currently the fastest theorem provers for intuitionistic first-order logic
(JProver, ft and ileanSeP prove significantly less problems than ileanCoP [16, 22]).

nanoCoP-i 2.0 proves about 10% more problem than nanoCoP-i 1.0. It also proves
more problem than ileanCoP, currently the fastest connection/tableau prover for first-
order intuitionistic logic. Slakje proves the largest number of problems, but the proof
reconstruction with GAPT shows a significant overhead. ileanCoP as well as nanoCoP-i
prove significant more problems than Slakje within a time limit of 10 seconds.

nanoCoP-M. Table 5 shows the results of the evaluation on all 580 unimodal problems
of the QMLTP library v1.1 [25]. Results are shown for the modal logics D, T, S4 and
S5, and for the varying, cumulative, and constant domain variants. It includes the fol-
lowing provers: MleanTAP 1.3, MleanCoP 1.3, nanoCoP-M 1.0, and nanoCoP-M 2.0.
MleanTAP [2] implements a prefixed tableau calculus; MleanCoP [19] implements a
prefixed clausal connection calculus; both provers are written in Prolog. Up to the au-
thors knowledge, these are currently the only provers for modal first-order logic (the se-
quent prover MleanSeP proves about the same number of problems as MleanTAP [19]).

nanoCoP-M 2.0 proves on average 16%, 4%, 11% and 6% more problems than
nanoCoP-M 1.0 for the modal logics D, T, S4 and S5, respectively. It refutes about
the same number of problems as nanoCoP-M 1.0. nanoCoP-M 2.0 also proves more
problems than MleanCoP, which was so far the most successful prover on the QMLTP
library [28]. The higher-order prover Leo-III [28] uses an embedding of modal logics
into simple type theory in order to deal with a wide range of different (higher-order)
modal logics. Leo-III does not support the QMLTP syntax, but previous evaluations
show that it proves slightly fewer problems of the QMLTP library than MleanCoP [28].
nanoCoP 2.0 solves 17 of the 20 multimodal problems in the QMLTP library, all of
them within one second.
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Table 5. Results on the unimodal problems (varying/cumul./constant) of the QMLTP library

MleanTAP 1.3 — MleanCoP 1.3 — nanoCoP-M1.0 — nanoCoP-M 2.0 —
Logic proved proved refuted proved proved refuted

D 100/120/135 184/206/223 274/248/222 167/187/204 193/213/230 265/245/229

T 138/160/175 223/251/271 159/132/114 222/244/263 231/253/273 153/133/119

S4 169/205/220 286/349/363 127/96/83 271/321/336 297/355/370 124/98/85

S5 219/272/272 358/435/435 94/41/41 343/414/414 365/440/440 92/44/44

5 Conclusion

In this paper the nanoCoP 2.0 provers for classical, intuitionistic and modal logics have
been presented. They are very compact and modular Prolog implementations of the non-
clausal connection calculi for classical and non-classical logics. The integration of a few
effective optimization techniques improves performance significantly. Compared to the
previous versions, the classical nanoCoP 2.0 system solves about 20% more problems
from the TPTP library, the intuitionistic nanoCoP-i 2.0 and the modal nanoCoP-M 2.0
systems prove about 10% more problems from the ILTP and QMLTP libraries. Despite
the overhead caused by the more complex non-clausal data structure, nanoCoP-i and
nanoCoP-M prove more problems than the corresponding clausal provers ileanCoP and
MleanCoP, and they are now among the fastest provers for these non-classical logics.

All nanoCoP 2.0 provers can provide detailed non-clausal connection proofs. Pre-
liminary results show that on the non-clausal problems in the TPTP library, the non-
clausal proofs of nanoCoP have on average only half the number of connections than
the clausal proofs produced by leanCoP. The non-clausal proofs are also more “natural”
as the structure of the original formula is preserved throughout the whole proof search.
This makes them in particular interesting for applications where a human readable out-
put or interaction is required. For example, the normative reasoner NAI uses MleanCoP
at its backend in order to reason over legal texts formalized in a multimodal first-order
logic [11, 12]. nanoCoP-M 2.0, which now also supports heterogeneous multimodal
logics, could be used in order to return a more natural human-readable proof.

Future work includes the integration of better refuting techniques into the nanoCoP
provers, which were so far not in the focus of the development. It also includes the ex-
tension to other modal logics, such as the modal logic K, for which a connection-based
proof approach is more difficult as subformulae that are not involved in any connection
might be relevant for a successful proof [31]. More straightforward is the development
of connection calculi and provers for first-order intuitionistic modal logic. The pre-
sented calculi and provers are optimized for full first-order logic. Combining these with
calculi for propositional logic might be promising as these calculi are entirely different
from the first-order ones. Another future work is the integration of learning techniques
into nanoCoP as already done in many (re-)implementations of leanCoP [9, 13, 32].
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