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Abstract

First-order modal logics have many applications, e.g., in planning, natural lan-
guage processing, program verification, querying knowledge bases, and modeling
communication. This paper gives an overview of several new implementations
of theorem provers for first-order modal logics based on different proof calculi.
Among these calculi are the standard sequent calculus, a prefixed tableau calcu-
lus, an embedding into simple type theory, and an instance-based method. All
these theorem provers are tested and evaluated on the QMLTP problem library for
first-order modal logic. The results of these test runs are compared and analyzed.

1 Introduction
Modal logics extend classical logic with the modalities ”it is necessarily true that” and
”it is possibly true that” represented by the unary operators 2 and 3, respectively.
First-order modal logics extend propositional modal logics by domains specifying sets
of objects that are associated with each world, and the standard universal and existential
quantifiers [9, 15, 17].

First-order modal logics allow a natural and compact knowledge representation.
The subtle combination of the modal operators and first-order logic enables specifica-
tions of epistemic, dynamic and temporal aspects, and of infinite sets of objects. For
this reason, first-order modal logics have many applications, e.g., in planning, natu-
ral language processing, program verification, querying knowledge bases, and mod-
eling communication. In these applications modalities are used to represent incom-
plete knowledge, programs, or to contrast different sources of information. First-order
components, such as variables, functions, predicates and quantifiers enable to describe
objects, their properties, types, and abstract information that can be instantiated later.

For example, the planning system PKS [27] constructs conditional plans. It uses
modal operators to represent incomplete knowledge, constants and predicates to de-
scribe objects and their properties, and variables and functions to generate abstract
plans, which are instantiated later, when sufficient knowledge is available. An inference
procedure for a restricted quantified modal logic determines whether the plan achieves
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the goal and the preconditions of the actions hold, and generates the effects of the
actions. PKS can be applied to, e.g., dialogue planning [37]. The dialogue system Ar-
timis [33] and the sentence-planner SPUD [40] plan, generate and interpret sentences in
a natural language. They use modalities to distinguish beliefs, intentions and actions of
the system and the user. First-order logic components represent objects, properties and
quantified statements. Variables enable to process abstract instructions that can be in-
stantiated later when more information is available [39]. An inference engine is adapted
to plan and interpret the sentences. The systems KIV [31], VSE-II [1] and KeY [8] are
advanced tools for program verification and synthesis. Their proof components use
dynamic and temporal first-order logic which are closely related to first-order modal
logic. The modalities represent programs, whereas functions, variables and quantifiers
characterize attributes, types and the creation of objects. Likewise the verification of
database update programs [36] and the integration of UML specification [10] can be
described in first-order modal logic. A first-order modal logic is also used as query
language for description logic knowledge bases [11]. Automated reasoning is required
to answer queries and to verify and optimize integrity conditions. Finally, first-order
modal logics are used to describe communication and cooperation [12, 23].

All these applications require the use of automated theorem proving (ATP) systems
for first-order modal logics. Whereas there are some ATP systems available for propo-
sitional modal logics, e.g., MSPASS [20] and modleanTAP [4], there are currently only
few ATP systems that can deal with the full first-order fragment of modal logics.

The purpose of this paper is to introduce some new ATP systems for first-order
modal logics and to evaluate, compare and analyze their performance on a standardized
problem set. The reader is assumed to be familiar with the syntax and semantics of first-
order modal logics, see, e.g., [15, 17]. If not stated otherwise the standard semantics
and the following options regarding first-order terms for all evaluated ATP systems are
considered: term designation is rigid, i.e., the terms denote the same object in each
world, and terms are assumed to be local, i.e., any ground term denotes an existing
object for each world.

This paper is structured as follows. In Section 2 all new and existing ATP systems
for first-order modal logics are shortly described. Section 3 provides details about the
used problem set and presents comprehensive performance results and comparisons
of all described ATP systems. Section 4 concludes with a short summary and a few
remarks on future work.

2 Implementing First-Order Modal Theorem Provers
The following (new and existing) ATP systems for first-order modal logics are de-
scribed in this section: MleanSeP based on the standard sequent calculus, GQML-
Prover and MleanTAP based on tableau calculi, M-Leo-II and M-Satallax based on an
embedding into simple type theory and the f2p-MSPASS based on an instance-based
method. Table 1 gives an overview of these systems.

2.1 Sequent Calculus
MleanSeP implements the standard sequent calculus for several modal logics.1 It is
implemented in Prolog. Proof search is carried out in an analytic way and free-variables
are used in combination with a dynamic Skolemization that is calculated during the

1MleanSeP can be downloaded at www.leancop.de/mleansep/programs/mleansep11.pl.



actual proof search. Together with the occurs-check of the term unification algorithm
this ensures that the Eigenvariable condition is respected.

MleanSeP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics K, K4, D, D4, S4, and T. To deal with constant domains, the Barcan
formula2 is automatically added to the given formula in a preprocessing step.

2.2 Tableau Calculi
GQML-Prover [44] is based on a free-variable tableau calculus using annotated tableau
nodes and function symbols. It uses a liberalized δ+-rule and is implemented in
OCaml. GQML-Prover 1.2 can deal with cumulative, constant and varying domains
of the modal logics K, K4, D, S4, and T, using rigid or non-rigid terms, and local or
non-local terms.

MleanTAP implements a prefixed tableau calculus.3 The compact system is imple-
mented in Prolog. It uses not only free term variables but also free string variables for
the prefixes and a prefix unification procedure. It is based on the ileanTAP system for
first-order intuitionistic logic [24]. At first MleanTAP performs a purely classical proof
search. After a classical proof is found, the prefixes of those literals that close branches
in the (classical) tableau are unified. The existence of a prefix substitution ensures that
the given formula is valid in modal logic as well [45]. If no prefix substitution exists
backtracking is done in order to find alternative classical proofs (and prefixes). To deal
with different modal logics only the prefix unification procedure has to be adapted [22].

MleanTAP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics D and S4. By further modifying the prefix unification algorithm MleanTAP
can be extended to the modal logics D4, S5, and T.

2.3 Embedding into Simple Type Theory
M-Leo-II 1.2 and M-Satallax 1.4 extend the ATP systems Leo-II 1.2 and Satallax 1.4
to first-order modal logics, respectively. Both provers use an embedding of quantified
modal logic into simple type theory [6]. Leo-II [7] and Satallax [2] are ATP systems
for typed higher-order logic.4 Leo-II is based on an extensional higher-order reso-
lution calculus. It cooperates with a first-order ATP system, by default E [34], and
applies term sharing and term indexing techniques. It is implemented in OCaml. Sa-
tallax uses a complete ground tableau calculus for higher-order logic to generate suc-
cessively propositional clauses and calls MiniSat repeatedly to test unsatisfiability of
these clauses. It can be regarded as an instance-based method for higher-order logic.
Satallax is implemented in Steel Bank Common (SBC) Lisp.

Currently the embedding of quantified modal logic into simple type theory works
for constant domains only. Thus, M-Leo-II 1.2 and M-Satallax 1.4 can deal with the
first-order constant domains of the modal logics K, D, S4, S5, and T.

2The Barcan formula scheme has the form ∀~x(2p(~x) ⇒ 2∀~xp(~x) with ~x = x1, . . . , xn for all predi-
cates p with n ≥ 1.

3MleanTAP can be downloaded at www.leancop.de/mleantap/programs/mleantap11.pl.
4These two higher-order ATP systems were selected as they have the best performance of all currently

available systems for higher-order logic [43].



2.4 Instance-Based Method
f2p-MSPASS 3.0 uses an instance-based method to generate ground formulas and the
ATP system MSPASS 3.0 for proving formulas in propositional modal logic. Like
most instance-based methods, the f2p-MSPASS system consists of two components.
The first component, called first2p, takes a first-order modal formula, removes all
quantifiers and replaces every variable with a unique constant. The second compo-
nent, MSPASS [20], takes the resulting (ground) formula and tries to find a proof or
a counter model. If a counter model is found first2p adds quantified subformulas to
the original formula and instantiates variables with new terms. Afterwards MSPASS is
again used to find a proof for the resulting formula. If first2p is unable to add any new
instances of subformulas, the original formula is invalid.

first2p is written in Prolog. It does not translate the given formula into any clausal
form but preserves its structure throughout the whole proof process. Due to the restric-
tions of modal logics this instance-based approach does only work for formulas that
contain either only existential or only universal quantifiers. MSPASS is an extension
of and incorporated into the resolution-based ATP system SPASS. It uses several trans-
lation methods into classical logic. By default the standard relational translation from
modal logic into classical logic is applied.

f2p-MSPASS 3.0 and can deal with the first-order cumulative and constant domains
of the modal logics K, K4, K5, B, D, S4, S5, and T. To deal with constant domains,
first2p automatically adds the Barcan formula (see Section 2.1) to the original formula
in a preprocessing step.

Table 1: First-order modal ATP systems

ATP system modal logics domains equality language
MleanSeP 1.1 K,K4,D,S4,T cumulative, constant no Prolog
MleanTAP 1.1 D, S4 cumulative, constant no Prolog
GQML-Prover 1.2 K,K4,D,S4,T cumul., const., vary. no OCaml
M-Leo-II 1.2 K,D,S4,S5,T constant yes SBC Lisp
M-Satallax 1.4 K,D,S4,S5,T constant yes OCaml
f2p-MSPASS 3.0 K,K4,K5,B, cumulative, constant no C/Prolog

D,S4,S5,T

3 Evaluating First-Order Modal Theorem Provers
In this section the ATP systems presented in Section 2 are evaluated on the QMLTP
library for first-order modal logics. Some details about the QMLTP library are given
first before comprehensive performance results and comparisons are presented.

3.1 Problem Set: The QMLTP Library
Testing ATP systems using standardized problem sets is a well-established method
for measuring their performance. For example, the TPTP library [41] and the ILTP
library [30] were developed for classical and intuitionistic logic, respectively. These
problem libraries have fostered the development of more efficient systems for these



logics. The basic idea of using problem libraries is to run the ATP systems on the
problems included in the library, determine the number of problems solved within a
given time limit, and to collect further data, e.g., the average run time used to solve
the problems. In order to have these performance results reflect the capabilities of
the systems accurately, the problem library shall be large enough, span a variety of
difficulty and subject matters, and have a standardized syntax [41].

Until recently there existed only very small collections of formulas that could be
used for testing and evaluating ATP systems for first-order modal logics. A small
set of first-order formulas was used for testing GQML-Prover [44]. For propositional
modal logics there exist some scalable problem classes [3] and approaches that generate
formulas randomly in a normal form [26]. But generating formulas randomly is not an
appropriate approach for the first-order case.

The Quantified Modal Logic Theorem Proving (QMLTP) library [29] provides a
comprehensive set of standardized problems in first-order modal logics and, thus, con-
stitutes a convenient basis for testing and evaluating the performance of ATP sys-
tems for first-order modal logics. The main purpose of the QMLTP library is to
stimulate the development of new ATP systems and calculi for first-order modal log-
ics. The current release v1.0 of the QMLTP library contains 500 problems repre-
sented in an extended TPTP syntax. The problem set is available for download at
http://www.iltp.de/qmltp.

Release v1.0 of the QMLTP library includes 245 problems that are generated by
using Gödel’s embedding of intuitionistic logic into the modal logic S4 [19]. The
original problems were taken from the TPTP library [41]. 10 problems were taken
from applications, e.g., planning, querying databases, natural language processing and
communication, and software verification [10, 11, 13, 32, 38, 39]. 175 problems come
from various textbooks [14, 15, 16, 18, 28, 35, 44] and 70 problems from the TANCS-
2000 system competition for modal ATP systems [21].

There are only few problems from real applications in the current release of the
QMLTP library. Future versions will include more problems from applications men-
tioned in Section 1 once they are submitted to the QMLTP library. The aim of the
QMLTP library is to start a cycle in which developers are inspired to improve their
ATP systems and users are encouraged to apply these systems and to contribute their
problems to the library stimulating the development of more efficient systems.

Each problem in the QMLTP library is assigned a modal status and a modal rating.
The status is either Theorem, Non-Theorem or Unsolved. Problems with Unsolved
status have not been solved by any ATP system.5 The rating determines the difficulty
of a problem with respect to current state-of-the-art ATP systems. It is the fraction of
state-of-the-art ATP systems that are not able to solve a problem within a given time
limit. For example a rating of 0.3 indicates that 30% of the state-of-the-art systems
do not solve the problem; a problem with rating of 1.0 cannot be solved by any state-
of-the-art system. A state-of-the-art system is an ATP system whose set of solved
problems is not subsumed by that of any another ATP system. In the current release of
the QMLTP library status and rating information is given with respect to the constant
and cumulative domains of the modal logics D and S4.

In order to represent modal problems in a standardized syntax, the Prolog syntax
of the TPTP library [41] is extended by the modal operators 2 and 3. The two Prolog
atoms ”#box” and ”#dia” are used for representing 2 and 3, respectively. The
formulas 2F and 3F are then represented by ”#box:F” and ”#dia:F”, respectively

5No theoretical investigations regarding the status of formulas have been done.



%--------------------------------------------------------------------------
% File : SYM001+1 : QMLTP v1.0
% Domain : Syntactic (modal)
% Problem : Barcan scheme instance. (Ted Sider’s qml wwf 1)
% Version : Especial.
% English : if for all x necessarily f(x), then it is necessary that for
% all x f(x)
% Refs : [Sid09] T. Sider. Logic for Philosophy. Oxford, 2009.
% : [Brc46] [1] R. C. Barcan. A functional calculus of first
% order based on strict implication. Journal of Symbolic Logic
% 11:1-16, 1946.
% Source : [Sid09]
% Names : instance of the Barcan formula
%
% Status : cumulative constant
% D Unsolved Theorem v1.0
% S4 Unsolved Theorem v1.0
%
% Rating : cumulative constant
% D 1.00 0.00 v1.0
% S4 1.00 0.00 v1.0
%
% term conditions for all terms: designation: rigid, extension: local
%
% Comments :
%--------------------------------------------------------------------------
qmf(con,conjecture,
(( ! [X] : (#box : ( f(X) ) ) ) => (#box : ( ! [X] : ( f(X) ) )))).
%--------------------------------------------------------------------------

Figure 1: Example of problem file SYM001+1 of the QMLTP library.

(see also Figure 1). For future extensions to multi-modal logic these atoms can be
extended to, e.g., Prolog terms of the form ”#box(i)” or ”#dia(i)” in which the
index ”i” is an arbitrary Prolog atom. As there exists no ATP system for first-order
multi-modal logic, the current release of the QMLTP library is restricted to uni-modal
problems only.

A header with useful information is added to the presentation of each problem. It
is adapted from the TPTP library and includes information about the file name, the
problem description, the modal status and the modal difficulty rating. An example file
of a first-order modal problem is given in Figure 1.

Note that the problem files of the QMLTP library are primary intended to present
the syntax of modal formulas. The options of the intended semantics, e.g., the inter-
pretation of the modal operators in the different modal logics is left to the (user of the)
particular ATP system.6 This increases the flexibility of the library as it can be used for
all (uni-modal) logics that share the standard modal syntax.

3.2 Performance Evaluation
Several criteria are used to evaluate and compare the performance of ATP systems. The
main measure is the number of problems that an ATP system solves within a given time
limit. For the evaluation the output of a proof or a counter model is not required, i.e.,
an assurance of the existence of a proof or counter model is sufficient. The time limit
is in terms of CPU time since no extensive memory usage was observed and, thus, wall
clock time is not significantly higher than CPU time. The average CPU runtime of an
ATP system was determined only for problems solved by all systems in order to make
the comparison fair. Otherwise, a system that spends more time solving a difficult
problem that is not solved by other systems would be disadvantaged.

6Even though some problems, e.g., problems stemming from Gödel’s embedding were originally devel-
oped with a specific modal logic in mind.



Another interesting property when evaluating ATP systems is their time complex-
ity behavior, i.e., the increase of number of solved problems when increasing the time
limit. When an ATP system solves most problems of the ones it can solve at all within
a second, its time complexity behavior is worse than that of a systems that still solves
a significant number of problems after 10 or 100 seconds. A very steep time com-
plexity behavior indicates that the ATP system’s underlying proof calculus needs to
be improved. What kind of problems are solved is interesting as well. Problems with
equality are of interest, because some calculi and techniques might be more appropriate
to deal with equality than others.

There are three further criteria to rate the performance of ATP systems: the state-
of-the-art (SOTA) system rating, the state-of-the-art contribution (SOTAC) and the ef-
ficiency measure [41, 42]. The SOTA system rating states how many difficult problems
an ATP system can solve. It is the fraction of problems that can be solved by the re-
garded system but not by all systems. The value is 1.0 if the system can solve all
difficult problems, and is 0.0 if it can only solve problems that are solved by all (state-
of-the-art) systems as well. The SOTAC of an ATP system measures its unique prob-
lems solving capability. The SOTAC of a specific problem is the inverse of the number
of state-of-the-art systems that solve the problem. For example, the maximal value 1.0
indicates that only one system solves the problem, 0.5 means that two state-of-the-art
system solve the problem. The SOTAC of an ATP system is the average SOTAC over
all problems solved by the system. The less “unique” an ATP system the smaller is its
SOTAC. Finally, the efficiency measure takes the number of solved problems and time
taken to solve them into account. It is the fraction of solved problems divided by the
average time needed to solve these problems. The more problems are solved and the
faster they are solved by an ATP system the higher is its efficiency measure.

3.3 The Test Environment
The ATP systems described in Section 2 are evaluated on the modal logics D and S4
with constant and cumulative domains. These are the modal logics supported by the
majority of available ATP systems. The standard semantics for the modal logics D and
S4, rigid term designation and local terms are used [15].

Table 2: Test Environment

hardware 3.4 GHz Xeon, 4 GB RAM
operating system Linux 2.6.24-24.x86 64
time limit 600 sec.
modal logic D S4

accessibility relation serial reflexive, transitive
axioms 2A→ 3A 2A→ A, 2A→ 22A

domains cumulative, constant
terms designation: rigid, extension: local

A test environment was developed for automatically conducting all performance
tests and for collecting and evaluating the results of all test runs. These test runs were
conducted on an eight-processor cluster system in order to simultaneously test sev-
eral ATP systems at a time. All ATP systems and components written in Prolog use



ECLiPSe Prolog 5.10. For M-Satallax 1.4 and M-Leo-II 1.2 the binaries of the CASC-
J5 [43] were used. For MSPASS the sources of SPASS 3.0 were compiled using the
GNU gcc compiler version 4.2.4.

The CPU time limit for all proof attempts was set to 600 seconds. For handling
equality the equality axioms were added in a preprocessing step for the ATP systems
MleanSeP, MleanTAP, GQML-Prover and f2p-MSPASS. The time required for adding
the equality axioms is less than a second and not included in the overall timings. Table 2
summarizes the test conditions.

3.4 Performance Statistics
Table 3 and Table 4 give an overview of the test results for all ATP systems described
in Section 2. M-Satallax and M-Leo-II can be applied to the constant domains only.

Table 3: Number of proved problems of the QMLTP library v1.0

D S4
cumulative constant cumulative constant

MleanSeP 1.1 117 120 203 201
MleanTAP 1.1 84 120 189 205

M-Satallax 1.4 - 107 - 188
M-Leo-II 1.2 - 104 - 172

GQML-Prover 1.2 88 95 137 133
f2p-MSPASS 3.0 47 47 88 88

Table 4: Number of found counter models of the QMLTP library v1.0

D S4
cumulative constant cumulative constant

MleanSeP 1.1 1 1 1 1
MleanTAP 1.1 1 1 1 1

M-Satallax 1.4 - 7 - 71
M-Leo-II 1.2 - 0 - 0

GQML-Prover 1.2 0 0 0 0
f2p-MSPASS 3.0 108 107 42 36

Table 5, 7, 9, and 11 present the performance results for the modal logics D and
S4 with cumulative and constant domains, respectively. They contain the number of
solved problems, the number of proved problems, and the number of counter models
(disproved) found within the time limit, the fraction of solved problems, the number of
solved problems within a specific time interval, the number of time outs, the number of
solved problems containing equality, the number of problems solved by only one ATP
system, the SOTA system rating, the SOTAC, and the efficiency measure as described
in section 3.2. The average run time was determined only for problems solved by all
ATP systems. These are 9% and 16% of all problems for the modal logics D and S4,
respectively.

For some problems MleanSeP and MleanTAP produce a stack overflow (stack). f2p-
MSPASS cannot be applied to 299 problems (gave up) as these problems contain both



existential and universal quantifiers (see remarks in Section 2.4). For some problems
GQML-Prover returns wrong results (inconsistent).7

Table 6, 8, 10, and 12 show the number of problems solved by one ATP system but
not by another system. For example, for the modal logic D with cumulative domains
MleanSeP solves 34 problems that are not solved by MleanTAP (see Table 6). The
performance graph of all considered ATP systems for the modal logics D and S4 with
cumulative and constant domains are depicted in Figure 2, 3, 4, and 5, respectively.

To compare the performance of the modal ATP systems with an ATP system for
classical logic, the classical prover leanTAP [5] was run on all modal problems, in
which the modal operators have been removed. Out of the 500 problems leanTAP 2.3
proves 282 problems and finds a counter model for one problem. It solves all except
one problem within one second.

Table 5: Benchmark results for modal logic D with cumulative domains

MleanSeP MleanTAP GQML-Prover f2p-MSPASS
1.1 1.1 1.2 3.0

solved 118 85 88 155
[%] 24% 17% 18% 31%

proved 117 84 88 47
disproved 1 1 0 108

0s to 1s 117 85 71 155
1s to 10s 0 0 1 0

10s to 100s 0 0 16 0
100s to 600s 1 0 0 0

time out 349 411 143 46
stack / gave up 33 4 264 0
not applicable 0 0 0 299
inconsistent 0 0 5 0

solved with equality 37 18 16 0
only by this system 27 0 22 107

average time [s] <0.01 <0.01 0.01 0.01
SOTA system rating 0.26 0.16 0.17 0.38

SOTAC 0.49 0.32 0.51 0.76
efficiency measure 0.05 289.00 0.02 102.23

Table 6: Number of problems solved by A but not by B for D with cumulative domains

system A system B
MleanSeP MleanTAP GQML-Prover f2p-MSPASS

1.1 1.1 1.2 3.0

MleanSeP 1.1 0 34 53 71
MleanTAP 1.1 1 0 26 37

GQML-Prover 1.2 28 34 0 55
f2p-MSPASS 3.0 108 107 117 0

7An inconsistency occurs, e.g., for problem SYM176+1 for all considered modal logics.



Table 7: Benchmark results for modal logic D with constant domains

MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS
1.1 1.1 1.4 1.2 1.2 3.0

solved 121 121 114 104 95 154
[%] 24% 24% 23% 21% 19% 31%

proved 120 120 107 104 95 47
disproved 1 1 7 0 0 107

0s to 1s 93 118 97 98 79 154
1s to 10s 27 3 10 0 1 0

10s to 100s 0 0 2 1 15 0
100s to 600s 1 0 5 5 0 0

time out 346 377 386 396 142 47
stack / gave up 33 2 0 0 257 0
not applicable 0 0 0 0 0 299
inconsistent 0 0 0 0 6 0

solved with equality 36 28 12 10 16 0
only by this ATP 6 4 4 1 15 104
average time [s] <0.01 <0.01 0.34 0.05 <0.01 0.01

SOTA system rating 0.15 0.15 0.14 0.13 0.11 0.21
SOTAC 0.29 0.28 0.26 0.23 0.38 0.72

efficiency measure 0.04 2.08 0.04 0.03 0.02 38.25

Table 8: Number of problems solved by A but not by B for D with constant domains

system A system B
MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS

1.1 1.1 1.4 1.2 1.2 3.0

MleanSeP 1.1 0 14 31 35 53 74
MleanTAP 1.1 14 0 29 31 48 73

M-Satallax 1.4 24 22 0 12 45 64
M-Leo-II 1.2 18 14 2 0 37 58

GQML-Prover 1.2 33 28 32 34 0 63
f2p-MSPASS 3.0 107 106 104 108 116 0

3.5 Comparison of Performance Results
In general, ATP systems prove more problems of the QMLTP library with respect to the
modal logic S4 than with respect to the modal logic D. Furthermore, more problems are
proved for the constant domains condition than for the cumulative domains condition.

These results are in line with the fact that every formula that is valid in the modal
logic D is also valid in S4, and that every formula that is valid for the cumulative
domains condition is also valid for the constant domains condition as shown in the
following figure:



Table 9: Benchmark results for modal logic S4 with cumulative domains

MleanSeP MleanTAP GQML-Prover f2p-MSPASS
1.1 1.1 1.2 3.0

solved 204 190 137 130
[%] 41% 38% 27% 26%

proved 203 189 137 88
disproved 1 1 0 42

0s to 1s 184 186 126 129
1s to 10s 8 2 0 0

10s to 100s 8 1 10 1
100s to 600s 4 1 1 0

time out 262 306 270 71
stack / gave up 34 4 91 0
not applicable 0 0 0 299
inconsistent 0 0 2 0

solved with equality 51 29 6 1
only by this system 28 17 28 48

average time [s] 0.72 <0.01 0.18 0.01
SOTA system rating 0.31 0.28 0.16 0.15

SOTAC 0.44 0.41 0.44 0.53
efficiency measure 0.06 0.23 0.06 1.28

Table 10: Number of problems solved by A but not by B for S4 with cumulative dom.

system A system B
MleanSeP MleanTAP GQML-Prover f2p-MSPASS

1.1 1.1 1.2 3.0

MleanSeP 1.1 0 32 95 123
MleanTAP 1.1 18 0 85 108

GQML-Prover 1.2 30 34 0 74
f2p-MSPASS 3.0 49 48 65 0

{F |F is valid in D cumulative domains} ⊂ {F |F is valid in D constant domains}
⊂ ⊂

{F |F is valid in S4 cumulative domains}⊂ {F |F is valid in S4 constant domains}.

However, for the modal logic S4 MleanSeP proves more problem for the cumula-
tive domains than for the constant domains. The reason for this behavior is that the
inclusion of the Barcan formula increases the search space for formulas that are valid
under both domain conditions.

MleanSeP proves the highest number of problems, except for S4 constant domain
where MleanTAP proves more problems than any other prover. MleanSeP also proves
the highest number of problems containing equality for all considered modal logics.

In general MleanTAP proves only slightly fewer problems than MleanSeP. It has
the best performance for S4 with constant domains and proves many problems with
equality as well. The time complexity behavior of MleanTAP is worse than that of
MleanSeP. Both MleanSeP and MleanTAP each found only one counter model.



Table 11: Benchmark results for modal logic S4 with constant domains

MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS
1.1 1.1 1.4 1.2 1.2 3.0

solved 202 206 259 172 133 124
[%] 40% 41% 52% 34% 27% 25%

proved 201 205 188 172 133 88
disproved 1 1 71 0 0 36

0s to 1s 170 203 166 155 123 123
1s to 10s 20 2 51 7 0 0

10s to 100s 8 1 28 4 9 1
100s to 600s 4 0 14 6 1 0

time out 265 292 241 328 271 77
stack / gave up 33 2 0 0 83 0
not applicable 0 0 0 0 0 299
inconsistent 0 0 0 0 13 0

solved with equality 45 29 14 9 4 1
only by this system 14 10 35 1 8 0

average time [s] 0.05 <0.01 0.41 0.08 0.18 0.01
SOTA system rating 0.16 0.16 0.22 0.12 0.08 0.07

SOTAC 0.30 0.29 0.35 0.22 0.29 0.29
efficiency measure 0.05 2.61 0.04 0.05 0.06 1.08

M-Satallax and M-Leo-II prove only slightly fewer problems than MleanSeP and
MleanTAP for D and S4 with constant domains. For the modal logic S4 M-Satallax
is very strong in finding counter models and solves a large number of problems that
were taken from the TANCS-2000. M-Leo-II does not find counter models and its time
complexity is slightly worse than that of M-Satallax.

f2p-MSPASS finds a high number of counter models for all considered modal log-
ics. Like M-Satallax it solves a high number of TANCS-2000 problems. However, its
time complexity behavior is very steep. All except one problem are solved within one
second. f2p-MSPASS cannot be applied to 299 problems (see remarks in Section 2.4).
There are only 31 non-propositional modal problems that are suitable for the instance-

Table 12: Number of problems solved by A but not by B for S4 with constant domains

system A system B
MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS

1.1 1.1 1.4 1.2 1.2 3.0

MleanSeP 1.1 0 23 43 54 90 122
MleanTAP 1.1 27 0 41 48 88 124

M-Satallax 1.4 100 94 0 91 122 136
M-Leo-II 1.2 24 14 4 0 50 93

GQML-Prover 1.2 34 28 9 24 0 81
f2p-MSPASS 3.0 44 42 1 45 59 0



based approach of f2p-MSPASS.8 This problem set is too small to provide meaningful
comparisons on the performance of f2p-MSPASS on first-order modal problems.

The classical leanTAP prover solves 283 problems (ignoring the modal operators)
indicating that many problems are hard even for classical tableau-based ATP systems.

4 Conclusion
Despite the fact that modal logics are considered as one of the most important non-
classical logics, the availability of implementations of automated theorem provers for
first-order modal logics is very limited so far. In this paper several new ATP systems
for various first-order modal logics based on different proof calculi and methods were
introduced.

The performance of all new and existing ATP systems for first-order modal logic
was evaluated on all 500 problems included in the first release v1.0 of the QMLTP
library. Comprehensive statistics including different performance measures as well as
illustrative performance graphs of the time complexity behavior were given for each
considered ATP system.

Even though most of the 500 problems included in the first release of the QMLTP
library have a rather syntactic nature, the QMLTP library serves as a useful basis in
order to obtain a first impression of the performance of ATP systems for first-order
modal logics.9 Future releases of the QMLTP library will provide more problems from
actual applications, thus, putting the testing and evaluation of ATP systems for modal
logic on a more stable basis. All interested users are invited to submit new first-order
problems to the QMLTP library.

An analysis of the performance results shows that the ATP system based on stan-
dard modal sequent calculi (performing an analytic tableau-like search) proves the
highest number of problems. It slightly outperforms the system based on prefixed
tableau calculi.10 As for classical logic the ATP system based on an instance-based
method finds by far the highest number of counter models. The systems using the
embedding of modal logic into type theory show a solid performance as well. All
considered ATP system solve most problems of the ones they solve at all within one
second. This behavior is similar to that of classical ATP systems using standard tableau
calculi. It indicates that the underlying proof calculi need to be improved.

The implementation of ATP systems for first-order modal logic is still in its infancy.
Future work includes the implementation of, e.g., connection-based calculi for first-
order modal logic and the extension of existing ATP systems to some first-order multi-
modal logics.
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8Of these problems ft2-MSPASS solves 16 problems (5 proved/11 counter models) for cumulative D, 15
problems (5/10) for constant D, 15 problems (9/6) for cumulative S4, and 9 problems (8/1) for constant S4.

9Observe the fact that problem libraries for classical first-order logic started with 75 (printed) problems
in 1986. In 1997 the TPTP library v2.0.0 included the first 217 (non-clausal) first-order problems [41]. Its
number has risen to over 5000 problems in the most recent version of the TPTP library.

10A similar behavior has already been shown by ATP systems for intuitionistic first-order logic [25].
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Figure 2: Performance graph for modal logic D with cumulative domains

Figure 3: Performance graph for modal logic D with constant domains



Figure 4: Performance graph for modal logic S4 with cumulative domains

Figure 5: Performance graph for modal logic S4 with constant domains


