
A Connection Calculus for the Description Logic ALC

Fred Freitas1 and Jens Otten1,2

1Informatics Center, Federal University of Pernambuco (CIn - UFPE), Brazil
2Institut für Informatik, University of Potsdam, Germany

fred@cin.ufpe.br, jeotten@cs.uni-potsdam.de

Abstract. This paper presents a connection calculus for the description logic (DL)
ALC. It replaces the usage of Skolem terms and unification by additional
annotation and introduces blocking, a typical feature of DL provers, by a new rule,
to ensure termination in the case of cyclic ontologies. Besides the connection
calculus, a simplified clausal form normalization is presented. Furthermore,
termination, soundness and completeness of the calculus are proven.

Keywords: description logic, connection method, inference system, reasoning,

1 Introduction

Description logics (DL) are widely used for knowledge representation and modelling

ontologies, e.g., they are the standard ontology language for the semantic web [1]. One

approach to reason with DL is the embedding of DL into classical first-order logic (FOL)

and using existing provers for FOL. On the one hand, when using a FOL prover to

answer DL queries, no alterations are required, since DL correspond to decidable

fragments of FOL [6, 8]. Moreover, the main FOL reasoners were exhaustively tested,

and thus, their usage is reliable and convenient. On the other hand, in a preliminary

study, Tsarkov et al. reported that, even running one of the fastest FOL provers, the FOL

approach displays a performance much slower than a specially crafted DL reasoner [12].

 This paper proposes a connection calculus 𝜃-CM for ALC, an important fragment of

DL. It relies on annotations instead of Skolem terms, and includes a rule for copying

clauses that implements blocking, similarly to existing tableau-based DL reasoners. It is

a significantly enhanced version of the connection calculus proposed earlier [3], which

essentially translates a DL formula into a FOL matrix, thus including Skolem terms and

unification, the latter here replaced by a similar procedure, 𝜃-substitution.

 The calculus was implemented in RACCOON (ReAsoner based on the Connection

Calculus Over Ontologies) [4]. Therefore, such a calculus and its implementation can

serve any Semantic Web application that deals with ALC, an important DL language.

 Section 2 presents the DL ALC. An ALC normalization is shown in Section 3. Section

4 explains the formal connection calculus for ALC, while its termination, soundness and

completeness are proven in Section 5. Section 6 concludes with a summary and an

outlook on future research.

mailto:jeotten@cs.uni-potsdam.de

2 The Description Logic ALC

An ontology O in ALC is a set of axioms over a signature (𝑁𝐶 , 𝑁𝑅 , 𝑁𝑂), where 𝑁𝐶 is the

set of concept names (unary predicate symbols), 𝑁𝑅 is the set of role or property

names (binary predicate symbols); 𝑁𝑂 is the set of individual names (constants) [1].

Concept expressions are inductively defined as follows. 𝑁𝐶 includes ⊤, the universal

concept that subsumes all concepts, and ⊥, the bottom concept subsumed by all concepts;

all concept names belong to 𝑁𝐶 . If 𝑟 ∈ 𝑁𝑅 is a role and C, D ∈ 𝑁𝐶 are concepts, then

these formulae are also concepts: (i) C ⊓ D (ii) C ⊔ D, (iii) ¬C, (iv) r.C; (v) r.C.

 A knowledge base in DL consists of a set of basic axioms (TBox), and a set of axioms

specific to a particular situation (ABox). Two axiom types are allowed in a TBox T : (i)

C ⊑ D; (ii) C ≡ D, standing for C ⊑ D and D ⊑ C. An ABox A w.r.t. a TBox T is a finite

set of assertions of two types: (i) a concept assertion is a statement of the form C(a),
where a ∈ 𝑁𝑂 , C ∈ 𝑁𝐶 and (ii) a role assertion r(a,b), where a, b ∈ 𝑁𝑂 , 𝑟 ∈ 𝑁𝑅 . An

ALC formula is either an axiom or an assertion; an ontology O is an ordered pair (T,A).

 There are two major ways of defining the semantics of ALC. The first one relies on

the definitions of interpretation, model, etc, over a domain ∆ [1]. Another way is by

mapping ALC constructs to FOL (see [1], 2.2.1.3) and exploiting the semantics defined

for FOL, see, e.g., [2]. This approach defines a translation 𝜙 that maps a concept C to a

unary predicate 𝜙𝐶(𝑥) with a free variable x. If C is a concept and r a role, then, e.g.,

∃𝑟. 𝐶 is translated into the FOL formula 𝜙∃𝑟.𝐶(𝑦) = ∃𝑥 𝑟(𝑦, 𝑥) ⋀ 𝜙𝐶(𝑥) [1].

 The work described in this paper uses an adaption of the translation approach, hence,

taking advantage of existing concepts of connection calculi for FOL.

 As for notation, in this paper, words starting with a capital letter denote concepts;

roles start with small letters. Individuals are denoted by the lowercase letters a,b,c,d;
variables are denoted by x,y,z,k,u,v. Terms are either variables or individuals.

3 Normal Form and Matrix for ALC

Definition 1 (Query). A query 𝛼 (a TBox or ABox axiom) against an ontology O is an

ALC formula for which the logical consequence O ⊨ 𝛼 should be proven.

Definition 2 (ALC disjunctive normal form, clause, matrix, graphical matrix).

Literals (of ALC) are atomic concepts or roles, possibly negated. Literals involved in an

universal restriction r.C or in a existential restriction r.C are underlined. In case a

restriction involves more than one clause, literals are indexed with the same new column

index number at the top. literals can participate at most in two universal restrictions in

left-hand side (LHS) axiom’s sub-formula or in two existential ones in the right-hand

side (RHS); therefore, they can have at most two indices, e.g. 𝐿𝑖,𝑗. An ALC formula in

disjunctive normal form (DNF) is a disjunction of conjunctions (like 𝐶1 ∨ … ∨ 𝐶𝑛),

where each 𝐶𝑖 has the form 𝐿1 ∧ … ∧ 𝐿𝑚 and each 𝐿𝑖 is a literal. The (ALC) matrix of an

ALC formula in DNF is its representation as a set {𝐶1, … , 𝐶𝑛}, where each clause 𝐶𝑖 has

the form {𝐿1, … , 𝐿𝑚} with literals 𝐿𝑖. In the graphical matrix representation, clauses are

represented as columns, and restrictions as lines; restrictions with indexes are horizontal,

while those without are vertical (see Example 1).

Remark 1. To deduce O ⊨ 𝛼 the validity of the formula 𝐶1 ∧ … ∧ 𝐶𝑛 → 𝛼 (O → 𝛼), i.e.

of ¬O ∨ 𝛼, must be proven. The effects for the DNF are: (i) axioms of the form 𝐸 ⊑ 𝐷

translate into 𝐸 ∧ ¬𝐷; (ii) ABox assertions are negated; (iii) free variables are

existentially quantified; (iv) FOL Skolemization is applied to universal variables; and

(v) the query 𝛼 is not negated.

Example 1 (Query, clause, ALC matrix). The query {∃ℎ𝑎𝑠𝑃𝑒𝑡. 𝐶𝑎𝑡 ⊑ 𝐶𝑎𝑡𝑂𝑤𝑛𝑒𝑟,

𝑂𝑙𝑑𝐿𝑎𝑑𝑦 ⊑ ∃ℎ𝑎𝑠𝑃𝑒𝑡. 𝐴𝑛𝑖𝑚𝑎𝑙 ⊓ ∀ℎ𝑎𝑠𝑃𝑒𝑡. 𝐶𝑎𝑡} ⊨ 𝑂𝑙𝑑𝐿𝑎𝑑𝑦 ⊑ 𝐶𝑎𝑡𝑂𝑤𝑛𝑒𝑟 reads in FOL as:

∀𝑥 ((∃𝑦 ℎ𝑎𝑠𝑃𝑒𝑡(𝑥, 𝑦) ∧ 𝐶𝑎𝑡(𝑦)) → 𝐶𝑎𝑡𝑂𝑤𝑛𝑒𝑟(𝑥))

∀𝑧 (𝑂𝑙𝑑𝐿𝑎𝑑𝑦(𝑧) → ∀𝑘(ℎ𝑎𝑠𝑃𝑒𝑡(𝑧, 𝑘) → 𝐶𝑎𝑡(𝑘))) ⊨ ∀𝑢(𝑂𝑙𝑑𝐿𝑎𝑑𝑦(𝑢) → 𝐶𝑎𝑡𝑂𝑤𝑛𝑒𝑟(𝑢))

∀𝑧 (𝑂𝑙𝑑𝐿𝑎𝑑𝑦(𝑧) → ∃𝑣(ℎ𝑎𝑠𝑃𝑒𝑡(𝑧, 𝑣) ∧ 𝐴𝑛𝑖𝑚𝑎𝑙(𝑣)))

and is represented by the FOL matrix (where a is a Skolem terms, f a function symbol):

{{hasPet(x,y), Cat(y), ¬CatOwner(x)}, {OldLady(z), hasPet(z,v) ,¬Cat(v)}, {OldLady(z),

¬hasPet(z,f(z))}, {OldLady(z), ¬Animal(f(z))}, {¬OldLady(a)}, {CatOwner(a)}}

and by the following ALC matrix (the column index marks the two clauses involved in

the same restriction; variables are omitted as they are specified implicitly):

{{hasPet, Cat, ¬CatOwner}, {OldLady, hasPet, ¬Cat}, {OldLady, ¬ℎ𝑎𝑠𝑃𝑒𝑡1}, {OldLady,

¬𝐴𝑛𝑖𝑚𝑎𝑙1}, {¬OldLady(a)}, {CatOwner(a)}}

[
hasPet OldLady OldLady OldLady ¬OldLady(a) CatOwner(a)

Cat ¬hasPet ¬Animal hasPet
¬CatOwner ¬Cat

]

Figure 1. The query from Example 1 represented as an ALC matrix

Definition 3 (Impurity, pure conjunction/disjunction). Impurity in an ALC formula is

a disjunction in a conjunction, or a conjunction in a disjunction. A pure conjunction (PC)

or disjunction (PD) does not contain impurities (see [3] for a formal definition).

Example 2 (Impurity, pure conjunction/disjunction). (a) ∃𝑟. 𝐴 and ⋀ 𝐴𝑖
𝑛
𝑖=1 are PCs if

A and each 𝐴𝑖 is also a PC. (b) (∀𝑟. (𝐷0 ⊔ … ⊔ 𝐷𝑛 ⊔ (𝐶0 ⊓ … ⊓ 𝐶𝑚) ⊔ (𝐴0 ⊓ … ⊓
𝐴𝑝)) is not a PD as it contains two impurities: (𝐶0 ⊓ … ⊓ 𝐶𝑚) and (𝐴0 ⊓ … ⊓ 𝐴𝑝).

Definition 4 (Two-lined disjunctive normal form). An ALC axiom is in 2-lined DNF

iff it is in DNF and in one of the normal forms (NFs): (i) �̂� ⊑ �̌�; (ii) 𝐸 ⊑ �̂�; (iii) �̌� ⊑
𝐸, where E is a concept name1, 𝐸 ̂is a pure conjunction, and �̌� is a pure disjunction. 2

Example 3 (Two-lined disjunctive normal form). The axioms (i) �̂� ⊑ �̌� (1NF);

(ii) 𝐸 ⊑ ∃𝑟. �̂� (2NF) and (iii) ∀𝑟. �̌� ⊑ 𝐸 (3NF), where 𝐸 ̂ = ⋀ 𝐶𝑖
𝑛
𝑖=1 and �̌� = ⋁ 𝐷𝑗

𝑚
𝑗=1 .

1 The symbols E and �̂� were chosen here to designate a concept name and a pure conjunction

rather than the usual C and �̂�, to avoid confusion with clauses, that are also denoted by C.
2 If ∃𝑟. ⊤ ⊆ �̂� or ∀𝑟. ⊥ ⊆ �̌� ∈ T, then the matrix must include axioms 𝐴 ⊑ ⊤, for all A ∈ 𝑁𝐶 , too.

Conversely, ∃𝑟. ⊥⊆ �̂� or ∀𝑟. ⊤ ⊆ �̌� requires axioms ⊥ ⊑ 𝐴, for all A ∈ 𝑁𝐶 , in the matrix.

𝑖) 1𝑁𝐹:

[

𝐶1

⋮
𝐶𝑛

¬𝐷1

⋮
¬𝐷𝑚]

 𝑖𝑖) 2𝑁𝐹: [
𝐸 ⋯ ⋯ 𝐸
¬𝑟 ¬𝐶1 ⋯ ¬𝐶𝑛

] 𝑖𝑖𝑖) 3𝑁𝐹: [
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐸 ⋯ ⋯ ¬𝐸
]

Figure 2. Examples of the three two-lined normal forms’ representations in ALC

Example 4 (Two-lined DNF). Table 1 shows examples of quantification restrictions.

Vertical lines represent existential restrictions (∃𝑟. 𝐶), horizontal lines represent

universal restrictions (∀𝑟. 𝐶) on the LHS axiom’s sub-formula or the opposite on the

RHS. Lines may overlap. Note also that, if written in FOL, Skolem functions should

appear in the two last NFs in Table 1 (e.g., ¬r(x,f(x)) would replace ∃𝑦 …¬r(x,y)).

Remark 2. The motivation for relying on these NFs is a two-fold: it saves memory by

avoiding redundancies in the matrix, and it helps proving the system’s soundness,

completeness and termination, by restricting the problematic cases to 2-lined columns.

 Normalized, “purified” TBoxes may add new, introduced concepts; however, they

are conservative extensions [5] of their originals, since to every model of the former

there is a (sometimes distinct) model of the latter, and validity is preserved. Besides, for

these NFs, in the worst case, the number of new concepts grows linearly with the number

of impurities; in the average case, this is better than other normalizations (e.g., in [10],

the number of new axioms grows linearly with the axioms’ length).

Table 1. Examples of quantification restrictions

Axiom Matrix Negated FOL mapping

∃𝑟. �̂� ⊑ ∀𝑠. �̌�

with �̂� a pure

conjunction,

�̌� a pure

disjunction
[

𝑟
𝐸1

⋮
𝐸𝑛

𝑠
¬𝐷1

⋮
¬𝐷𝑚]

∃𝑥∃𝑦∃𝑧
(r(x,y) ∧

𝐸1(y) ∧…∧ 𝐸𝑛(y)
∧

(s(x,z) ∧
 ¬𝐷1(z) ∧…∧ ¬𝐷𝑚(z))

𝐴 ⊑ ∃𝑟. �̂�
A is a concept

name, �̂� as above

[
𝐴 ⋯ ⋯ 𝐴
¬𝑟 ¬𝐸1 ⋯ ¬𝐸𝑛

]
∃𝑥∀𝑦((A(x)∧ ¬r(x,y))

∨ (A(x) ∧ ¬𝐸1(y))
∨...∨ (A(x) ∧ ¬𝐸𝑛(y)))

∀𝑟. �̌� ⊑ 𝐴

𝐴, �̌� as above
[
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐴 ⋯ ⋯ ¬𝐴
]

∀𝑥∃𝑦
(¬r(x,y) ∧ ¬A(x)) ∨

(𝐷1(y) ∧ ¬A(x)) ∨...∨
(𝐷𝑚(y) ∧ ¬A(x))

Definition 5 (Cycle, cyclic / acyclic ontologies and matrices). If A and B are atomic

concepts in an ontology O, A directly uses B, if B appears in the right-hand side of a

subsumption axiom whose left-hand side is A. Let the relation uses be the transitive

closure of directly uses. A cyclic ontology or matrix has a cycle when an atomic concept

uses itself; otherwise it is acyclic [1]; e.g., O = {A ⊑ ∃r.B, B ⊑ ∃s.A} is a cyclic ontology.

Besides, in acyclic ontologies all subsumption axioms have a concept name in its LHS.

4 The ALC 𝜽-Connection Calculus (ALC 𝜽-CM)

The ALC 𝜃-Connection Method (henceforth ALC 𝜃-CM) differs from the FOL

Connection Method (CM) by replacing Skolem functions and unification by 𝜃-

substitutions, and, just as typical DL systems, employs blocking to assure termination.

Definition 6 (Path, connection, 𝜃-substitution, 𝜃-complementary connection). A

path through a matrix M contains exactly one literal from each clause in M. A connection

is a pair of literals {𝐸, ¬𝐸} with the same concept/role name, but different polarities. A

𝜃-substitution assigns each (possibly omitted) variable an individual or another variable.

A 𝜃-complementary connection is a pair of ALC literals {𝐸(𝑥), ¬𝐸(𝑦)} or

{𝑝(𝑥, 𝑣), ¬𝑝(𝑦, 𝑢)}, with 𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑣) = 𝜃(𝑢). The complement �̅� of a literal 𝐿 is

𝐸 if 𝐿 = ¬𝐸, and it is ¬𝐸 if 𝐿 = 𝐸.

Remark 3 (𝜃-substitution). Simple term unification without Skolem functions is used

to calculate 𝜃-substitutions. The application of a 𝜃-substitution to a literal is an

application to its variables, i.e. 𝜃(𝐸) = 𝐸(𝜃(𝑥)) and 𝜃(𝑟) = 𝑟(𝜃(𝑥), 𝜃(𝑦)), where 𝐸 is

an atomic concept and 𝑟 is a role. Furthermore, 𝑥𝜃 = 𝜃(𝑥).

Definition 7 (Set of concepts, Skolem condition). The set of concepts 𝜏(𝑥) of a variable

or individual x contains all concepts that were instantiated by 𝑥 so far, or, more formally,

𝜏(𝑥) ≝ {𝐸 ∈ 𝑁𝐶|𝐸(𝑥) ∈ 𝑃𝑎𝑡ℎ}. The Skolem condition, ensures that at most one concept

is underlined in the graphical matrix form. This condition is formally defined as

∀𝑎 | { 𝐸𝑖 ∈ 𝑁𝐶 |𝐸
𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ } | ≤ 1, where i is a column index.

Lemma 1 (Equivalence between 𝜃-substitution in ALC 𝜃-CM and unification in CM

for ALC formulae). 𝜃-substitution is equivalent to unification for ALC formula, i.e.,

both procedures either return the same results or behave the same way w.r.t. their calculi,

when given the same inputs.

Proof. The cases occurring in ALC, all covered by 𝜃-substitution, are in Table 2.

Table 2. Equivalence for ALC between CM unification and 𝜃-substitution in ALC 𝜃-CM

Unification 𝜃-substitution

Input Output Input Output

 𝐿1 = 𝐸(𝑥)

 𝐿2 = ¬𝐸(𝑎)

𝜎(𝐿1) = 𝐸(𝑎) 𝐿1 = 𝐸 𝑜𝑟 𝐸(𝑥)

 𝐿2 = ¬𝐸(𝑎)

𝜃(𝐿1) = 𝐸(𝑎)

 𝐿1 = 𝐸(𝑥)

 𝐿2 = ¬𝐸(𝑦)

𝜎(𝐿1) = 𝐸(𝑦) 𝐿1 = 𝐸 𝑜𝑟 𝐸(𝑥)

 𝐿2 = ¬𝐸 𝑜𝑟¬𝐸(𝑦)

𝜃(𝐿1) = 𝐸(𝑦)

 𝐿1 = 𝐸(𝑏)

 𝐿2 = ¬𝐸(𝑎)

Not unifiable 𝐿1 = 𝐸(𝑏)

 𝐿2 = ¬𝐸(𝑎)

No 𝜃-substitution:

Not unifiable

 𝐿1 = 𝐸(𝑥)

 𝐿2 = ¬𝐸(𝑓(𝑦))
𝜎(𝐿1) = {𝐸(𝑓(𝑦))} 𝐿1 = 𝐸

 𝐿2 = ¬𝐸𝑖

𝜃(𝐿1) = 𝐸(𝑦)

𝜏(𝑦) = 𝜏(𝑦) ∪ {¬𝐸𝑖}

 𝐿1 = 𝐸(𝑔(𝑥))

 𝐿2 = ¬𝐸(𝑓(𝑦))

Not unifiable 𝐿1 = 𝐸𝑘

 𝐿2 = ¬𝐸𝑗

No 𝜃-substitution,as Skolem

Condition does not hold: ∀𝑎

|{𝐸𝑖| 𝐸𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ}| ≤ 1

Note that in all cases 𝜃-substitution and unification yield the same substitution or no

substitution; the only exception resides in the case where 𝐿1 = 𝐸(𝑥) and
 𝐿2 = ¬𝐸(𝑓(𝑦)) (𝐿1 = 𝐸, 𝐿2 = ¬𝐸𝑖 in the notation without variables). However,

Lemma 2 shows that they are equivalent, in the sense that unification in FOL CM prevents

the same connections that ALC 𝜃-CM and 𝜃-unification prevent. ∎

Definition 8 (ALC connection calculus). Figure 3 shows the formal ALC connection

calculus (ALC 𝜃-CM), adapted from the FOL CM [9]. The rules of the calculus are

applied in an analytic, bottom-up way. The basic structure is the tuple <C, M, Path>,

where clause C is the open sub-goal, M the matrix corresponding to the query O ⊨𝛼 (O

is an ALC ontology) and Path is the active path, i.e. the (sub-)path currently checked.

The index 𝜇 ∈ ℕ of a clause 𝐶𝜇 denotes that 𝐶𝜇 is the 𝜇-th copy of clause C, increased

when Cop is applied for that clause (the variable x in 𝐶𝜇 is denoted 𝑥𝜇) – see example of

copied clauses in Figure 8. When Cop is used, it is followed by the application of Ext or

Red, to avoid non-determinism in the rules’ application. The Blocking Condition is

defined as follows: the new individual 𝑥𝜇
𝜃 (if it is new, then 𝑥𝜇

𝜃 ∉ 𝑁𝑂, as in the condition)

has its set of concepts 𝜏(𝑥𝜇
𝜃) compared to the set of concepts of the previous copied

individual, i.e., 𝜏(𝑥𝜇
𝜃) ⊈ 𝜏(𝑥𝜇−1

𝜃) [11], to test if the former is a subset of the latter.

𝐴𝑥𝑖𝑜𝑚 (𝐴𝑥)
{ },𝑀, 𝑃𝑎𝑡ℎ

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆𝑡)
𝐶1,𝑀, {}

𝜀,𝑀, 𝜀
 𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝛼

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅𝑒𝑑)
𝐶,𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝑤𝑖𝑡ℎ 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸𝑥𝑡)
𝐶1\{𝐿2},𝑀\𝐶1, 𝑃𝑎𝑡ℎ ∪ {𝐿1} 𝐶,𝑀, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝑀, 𝐿2 ∈ 𝐶1, 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝)
𝐶 ∪ {𝐿1},𝑀 ∪ {𝐶2

𝜇
}, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶2
𝜇
 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1, 𝐿2 ∈ 𝐶2

𝜇
, 𝜃(𝐿1) = 𝜃(𝐿2

̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

Figure 3. The connection calculus ALC 𝜃-CM

Remark 4 (ALC connection calculus). FOL CM already copies clauses, using the

indexing function 𝜇; in ALC 𝜃-CM, Cop implements blocking [1], when no alternative

connection is available and cyclic ontologies are dealt. It regulates the creation of new

individuals, thus preventing non-termination. The Skolem condition solves the FOL

cases where the combination of Skolemization and unification correctly prevents

connections (see Soundness Theorem below). The Skolem condition is easy to

implement: only a flag denoting if each variable/individual in any path contains an

underlined concept suffices Finally, in the Ext and Red rules, 𝜃-substitutions replace

variables by variables/individuals in the whole matrix. Any individual x can have in its

set of concepts 𝜏(𝑥) at most a single concept name with a column index in the matrix

(i.e., ∀𝑎 |{𝐸𝑖 ∈ 𝑁𝐶| 𝐸𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ}| ≤ 1). This restriction avoids the situation in FOL

matrices, where unification is tried with distinct Skolem functions (see Lemmas 1, 2).

Example 5 (ALC connection calculus). Figures 4 and 5 show the proof of the query

from Example 1 using the matrix representation and the formal calculus, respectively.

1. [

hasPet OldLady OldLady OldLady ¬OldLady(a) CatOwner(a)

⇒ Cat ¬hasPet ¬Animal hasPet

¬CatOwner ¬Cat

]

2. [

⇒ hasPet OldLady OldLady OldLady ¬OldLady(a) CatOwner(a)

Cat ¬hasPet ¬Animal ⇒ hasPet

¬CatOwner ¬Cat

]

3. [

⇒ hasPet OldLady OldLady ⇒ OldLady ¬OldLady(a) CatOwner(a)

Cat ¬hasPet ¬Animal hasPet

¬CatOwner ¬Cat

]

4. [

⇒ hasPet OldLady OldLady OldLady ¬OldLady(a) CatOwner(a)

Cat ¬hasPet ¬Animal hasPet

¬CatOwner ¬Cat

]

5&6. [

hasPet OldLady OldLady OldLady ¬OldLady(a) CatOwner(a)

Cat ¬hasPet ¬Animal hasPet

¬CatOwner ¬Cat

]

Figure 4. The proof of the query using the graphical matrix representation. Arcs are connections

whose labels are the names of the involved individual(s)/variable.

Figure 5. The proof of the query using the formal connection calculus, where M is an

abbreviation for 𝑀 = {{ℎ, 𝐶, ¬𝐶𝑂}, {𝑂, ℎ, ¬𝐶}, {𝑂, ¬ℎ1}, {𝑂, ¬𝐴1}, {¬𝑂(𝑎)}, {𝐶𝑂(𝑎)}} (the

double-ended arrow just copies the proof part to save text space).

a

a
x

a
x

(y,x)

a
x

(a,x)

a

a
x

(a,x)

a
 (a,x)

(a,x)

a

5 Termination, Soundness and Completeness

Definition 9 (Functional equivalence between decidable inference systems w.r.t. a

set of formulae). An inference system A is functionally equivalent to a system B w.r.t.

a set of formulae Σ when, for any formula 𝛼, Σ ⊢𝐴 𝛼 ↔ Σ ⊢𝐵 𝛼 and Σ ⊬𝐴 𝛼 ⟷ Σ ⊬𝐵 𝛼.

Lemma 2 (Functional equivalence between CM and ALC 𝜃-CM for acyclic ALC

formulae). ALC 𝜃-CM is functionally equivalent to CM w.r.t. acyclic ALC formulae.

Proof. Given that (i) Cop is not applied here; (ii) the two systems only differ on the

replacement of unification by 𝜃-substitution in the Ext and Red rules; and (iii) 𝜃-

substitution is equivalent to unification, Lemma 1 proves all cases but one: a connection

with two Skolem functions. The proof for that case is inductive over the matrix structure.

Induction Hypothesis:𝑂 ⊬𝐶𝑀 𝛼, where the only available connection is between literals

with distinct Skolem functions.

Base case: Suppose a tentative connection between literals with two distinct Skolem

functions. For instance, a posed query ∃𝑟. 𝐴 ⊑ 𝐸, 𝐸 ⊑ ∀𝑟. 𝑎 ⊨ 𝐸(𝑎), represented in FOL

for the CM in Figure 6a. Unification prevents the connection (denoted by a dotted lined)

in the CM. For ALC 𝜃-CM, this connection is forbidden too, due to the Skolem condition.

In Figure 6b, for the new variable y, 𝜏(𝑦) = {𝐴2}; so it cannot contain also ¬𝐴1,

otherwise it would violate the Skolem condition (∀𝑎 |{𝐸𝑖 ∈ 𝑁𝐶| 𝐸𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ}| ≤ 1).

𝑎) [
𝐸(𝑥) 𝐸(𝑥) ¬𝑟(𝑦, 𝑔(𝑦)) 𝐴(𝑔(𝑦)) 𝐸(𝑎)

¬𝑟(𝑥, 𝑓(𝑥)) ¬𝐴(𝑓(𝑥)) ¬𝐸(𝑦) ¬𝐸(𝑦)
] 𝑏) [

𝐸 𝐸 ¬𝑟 𝐴 𝐸(𝑎)

¬𝑟 ¬𝐴 ¬𝐸 ¬𝐸
]

Figure 6. Tentative connection proof for a) ∃𝑟. 𝐴 ⊑ 𝐸, 𝐸 ⊑ ∀𝑟. 𝐴 ⊬𝐶𝑀 ¬𝐸(𝑎), with 𝜎 = {𝑦/𝑎}

and b) ∃𝑟. 𝐴 ⊑ 𝐸, 𝐸 ⊑ ∀𝑟. 𝐴 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 ¬𝐸(𝑎). Dotted lines stand for forbidden connections.

Inductive case. Suppose an individual a or a variable x that, in CM, takes part in several

connections, two of two in literals with Skolem functions. Then the same behavior from

the base case will occur here: CM prevents the last connection ought to unification

between two different Skolem functions, while ALC 𝜃-CM avoids the connection on the

basis that the Skolem condition is violated. In Figure 7, the set of concepts of y or a

cannot admit two underlined concepts, i.e. 𝜏(𝑦) = {𝐴1}, but 𝜏(𝑦) ≠ {𝐴1, ¬𝐶2}, again

due to the Skolem condition (|{𝐸𝑖 ∈ 𝑁𝐶| 𝐸
𝑖(𝑦) ∈ 𝑃𝑎𝑡ℎ}| ≤ 1).

[
𝐸 𝐸 𝐶 … 𝐷 ¬𝑟 𝐴 𝐸(𝑎)

¬𝑟 ¬𝐶 𝐵 … ¬𝐴 ¬𝐸 ¬𝐸
]

Figure 7. Tentative ALC 𝜃-CM connection proof for the inductive case

 Since the two systems apply the same rules in the same order and the effects of

unification in the FOL CM are the same as that of the 𝜃-substitution in ALC 𝜃-CM, the

systems are equivalent for the set of acyclic ALC formulae. ∎

Remark 5 (Cyclic ontologies). Lemma 2 entails that termination, soundness and

completeness need only to be proven for the cyclic cases. Lemma 2.22 from [1] states

that in a cyclic ontology O, for an individual name 𝑥𝑖 ∈ ABox A of concept 𝐸𝑖 (i.e.,

a

y

a

a

a y

individual 𝐸𝑖(𝑥𝑖) is an assertion), then there is a unique finite sequence of roles

𝑟1, … , 𝑟𝑖 (𝑖 ≥ 1), a unique finite sequence of i role instances (the so-called role

successors) 𝑟1(𝑥0, 𝑥1), … , 𝑟𝑖(𝑥𝑖−1, 𝑥𝑖), and a unique, finite sequence of individual names

𝑥1, … , 𝑥𝑖−1 that creates 𝑥𝑖 for the ALCN tableaux system, as defined by the authors (also

holds for ALC, since it is a subset of ALCN). For the ALC 𝜃-CM, a similar corollary is

valid, without needing role successors.

Lemma 3 (Uniqueness of a generation sequence). Suppose 𝐸𝑖 an ALC concept from a

query over a cyclic ontology O, 𝑥𝑖 an individual name of concept 𝐸𝑖 (i.e., 𝐸𝑖(𝑥𝑖)). Then,

there is a unique finite sequence of individual names 𝑥0, … , 𝑥𝑖−1, 𝑥𝑖 in a path.

Proof. Since only one rule is applied at a time, the new concept instance 𝐸𝑖(𝑥𝑖) (with the

new individual name 𝑥𝑖) is created in the end of the active path. Since the active path

contains the unique sequence 𝐸(𝑥0), … , 𝐸(𝑥𝑖−1), the corollary holds. ∎

 On the other hand, it is easy to see why role successors [1, Lemma 2.22] are not

needed in ALC 𝜃-CM (for notation ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 and ⊢𝐶𝑀 stand for deductions carried out

with ALC 𝜃-CM, CM respectively). Observe the generation of ¬𝐸(𝑐) for the query

described as 𝐸 ⊑ ∃𝑟. 𝐸 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 ¬𝐸(𝑎) in Figure 8: the active path in this case is

{¬𝐸(𝑎), ¬𝐸(𝑏), ¬𝐸(𝑐)}. In tableaux systems, role successors ¬𝑟(𝑎, 𝑏) and ¬𝑟(𝑏, 𝑐)

would also need to be created to arrive at ¬𝐸(𝑐).

[
𝐸 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸
] ⊢. . ⊢ [

𝐸 𝐸 𝐸 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸 ¬𝐸 ¬𝐸
]

Figure 8. The creation of the unique sequence {¬𝐸(𝑎), ¬𝐸(𝑏), ¬𝐸(𝑐) } to arrive at ¬𝐸(𝑐) for

the unfinished query 𝐸 ⊑ ∃𝑟. 𝐸 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 ¬𝐸(𝑎), with 𝜇({𝐸, ¬𝐸})=2

Theorem 1 (Termination). Given M, the matrix representing the arbitrary query

𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼, and a chosen initial clause C, any rule sequence in the ALC 𝜃-CM applied

over the tuple “𝜀,𝑀, 𝜀” terminates.

Proof. Case 1) 𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼, which has itself three sub-cases:

a) ALC 𝜃-CM does not apply the Copy rule, and M is proven valid. This case reduces to

the last, since the proof is found and has no cycle; then, ALC 𝜃-CM terminates.

b) ALC 𝜃-CM uses cyclic axioms, but the Copy rule is only applied with already existent

individuals. Again, ALC 𝜃-CM is equivalent to CM, because the already existent

individuals are not created by Cop; thus, 𝑥𝜇
𝜃 ∈ 𝑁𝑂, which never meets the blocking

conditions. Consequently, the indexing function 𝜇 is incremented, the cyclic columns

𝐶2
𝜇

 are copied, and the process repeats that of the CM. Besides, after the copy, 𝜃-

substitutions work just as unifications (Lemma 1). Since CM terminates (see proof at [2,

III.6.4.]), ALC 𝜃-CM terminates for this case, too.

c) ALC 𝜃-CM uses the cyclic axioms and the Copy rule (Cop) to create new individuals.

The blocking condition from Cop ensures termination, given that it prevents Cop to be

applied indefinitely, thus generating infinite repetitions of finite sequence(s) of

individual names 𝑥0, … , 𝑥𝑗−1, 𝑥𝑗 in the active path p that would characterize the loop.

The blocking condition identifies such repetitions, by checking if the generated concept

b c
a a

instances are new individuals names (testing if the new instance is not in the ABox

already, i.e., if 𝑥𝜇
𝜃 ∉ 𝑁𝑂), and if their set of concepts (τ) is changing (by testing whether

𝜏(𝑥𝜇
𝜃) ⊈ 𝜏(𝑥𝜇−1

𝜃), i.e., if the new instance`s set of concepts is a subset of the set of the

previously created instance). If both conditions are met, this active path is blocked; ALC

𝜃-CM runs until a proof is found (see Completeness Theorem below) and halts.

Case 2) O ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼, which has two sub-cases:

a) The Copy rule is not applied or is applied with existent individuals, not created by

previous Copy rule applications (i.e., 𝑥𝜇
𝜃 ∈ 𝑁𝑂), there are open subgoals which make

𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼. This case is analogous to cases 1)a) and b).

b) When the Copy rule creates new 𝑥𝑖 individuals, the case is similar to 1)c). The infinite

open cycles are detected by the Copy rule and blocked, and the proof fails due to open

subgoals. Hence, ALC 𝜃-CM terminates for this case, and thus, for all cases. ∎

Theorem 2 (Soundness) An ALC formula in the two-lined disjunctive normal form M

is valid if there is a connection proof for “𝜀,𝑀, 𝜀” in the ALC 𝜃-CM, i.e. there exists a

derivation in which all leaves are axioms.

Proof. CM is a decision procedure for ALC, since ALC corresponds to the decidable

FOL fragment 𝐿2 [8]. Thus, 𝑂 ⊢𝐶𝑀 𝛼 implies in 𝑂 ⊨ 𝛼. Hence, it suffices to prove that

𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 implies in 𝑂 ⊢𝐶𝑀 𝛼. For the cyclic cases and when M originally contains

(Skolem) functions, the ALC formulae will be converted to the 2NF and 3NF,

respectively 𝐸 ⊑ ∃𝑟. 𝐸 ̂(or 𝐸 ⊑ �̂�); and ∀𝑟. �̌� ⊑ 𝐸 (or �̌� ⊑ 𝐸), E being an atomic

concept, �̂� a pure conjunction and �̌� a pure disjunction. This case is proved by the

contrapositive: 𝑂 ⊬𝐶𝑀 𝛼 must imply in 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼.

 The contrapositive proof is by structural induction on the structure of the finite

sequence of individual names 𝑥1, … , 𝑥𝑖−1 that generates the next individual of the cycle

𝑥𝑖. The cases of each of the two normal forms are proven in a similar way, as they differ

only in the polarity of the class(es) involved in the existential/universal restriction. Note

that in any case, the normal forms only generate columns with two elements, which

facilitates the inductive proof. The proof for second normal form comes next. The set of

formulae in the first, second, third normal forms is denoted by 𝑆1𝑁𝐹 , 𝑆2𝑁𝐹 and 𝑆3𝑁𝐹 .

Induction Hypothesis: 𝑂 ⊬𝐶𝑀 𝛼, where 𝑎 ∈ 𝑂, 𝑆2𝑁𝐹 (also works for 𝑆3𝑁𝐹).

Base case: 𝑂 = {𝐸 ⊑ ∃𝑟. 𝐸} ∈ 𝑆2𝐷𝑁𝐹 , 𝑂 ⊬𝐶𝑀 𝛼, 𝛼 being an arbitrary formula, e.g.

𝛼 = {¬𝐸(𝑎)}, as shown in Figures 9a,b. After the connection {E(x), ¬𝐸(𝑎)}, with 𝜎 =
{𝑥/𝑎}, due to the lack of complement for ¬𝐸(𝑓(𝑥))), first FOL CM copies the second

clause increasing this clause’s 𝜇 (see Figure 9a). Then, occurs-check blocks the new

connection, and, therefore, 𝐸 ⊑ ∃𝑟. 𝐸 ⊬𝐶𝑀 ¬𝐸(𝑎).

 As for the ALC 𝜃-CM, the case is portrayed in Figure 9b. The first connection is equal

to that of CM (except for applying 𝜃 instead of 𝜎). In the second clause

({𝐸,¬𝐸1}), ¬𝐸(𝑏)1 is built as a 𝜃-substituition. Next (not shown in the figure), Cop is

applied, and a new clause {𝐸,¬𝐸2} appears in M. Then, the connection {¬𝐸(𝑏)1, 𝐸(𝑏)}

is settled, and instead of generating a new individual name c, b is reused in the new literal

E(b) (an alternative test for blocking suggested by Baader and Nutt [1]). A new clause

copy is made, and since the connection {¬𝐸(𝑏)2, 𝐸(𝑏)} reappears, the process is

blocked and 𝐸 ⊑ ∃𝑟. 𝐸 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 ¬𝐸(𝑎). The lines below the last matrix represent the

fact that each new clause copy shall not represent the same individual instantiated in E,

i.e., a new individual must instantiate ¬𝐸. So, for the base case 𝑎 ∈ 𝑂, 𝑆2𝑁𝐹 ,𝑂 ⊬𝐶𝑀 𝛼

implies in 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼, q.e.d.

𝑎) [
𝐸(𝑥) 𝐸(𝑥) ¬𝐸(𝑎)

¬𝑟(𝑥, 𝑓(𝑥)) ¬𝐸(𝑓(𝑥))
] ⊬𝐶𝑀 [

𝐸(𝑥) 𝐸(𝑥) 𝐸(𝑦) ¬𝐸(𝑎)

¬𝑟(𝑥, 𝑓(𝑥)) ¬𝐸(𝑓(𝑥)) ¬𝐸(𝑓(𝑦))
]

𝑏) [
𝐸 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸
] ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 . .⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 [

𝐸 𝐸 𝐸 𝐸 ¬𝐸(𝑎)

¬𝑟 ¬𝐸 ¬𝐸 ¬𝐸
]

Figure 9. Tentative connection proof, showing that a) 𝐸 ⊑ ∃𝑟. 𝐸 ⊬𝐶𝑀 ¬𝐸(𝑎), 𝜎 = {𝑥/𝑎}, with

𝜇({𝐸(𝑥),¬𝐸(𝑓(𝑥))})=1, and that b) 𝐸 ⊑ ∃𝑟. 𝐸 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 ¬𝐸(𝑎), with 𝜇({𝐸, ¬𝐸})=2

Inductive Case: Suppose 𝑂 = {𝐸 ⊑ ∃𝑟. 𝐵, 𝐵 ⊑ �̂�}, 𝛼 = {¬𝐸(𝑦0)}, 𝛼 an arbitrary

formula), 𝑦0 an individual name, �̂� a pure conjunction that uses E. In that case, �̂� is in

one of the following forms: 𝐸 ⊓ �̂�, ∃𝑟. (𝐸 ⊓ �̂�) or ∃𝑟. (𝐸 ⊓ �̂�) ⊓ �̂�, being �̂�, �̂� also

pure conjunctions. In either form, M contains the column {B(x), ¬𝐸(𝑓(𝑥))} for CM and

{B(x), ¬𝐸(𝑦)1} for ALC 𝜃-CM. Therefore, even after pursuing long finite sequences of

individual names 𝑥1, … , 𝑥𝑖−1, CM fails just as in the base case, by occurs-check or

looping. Similarly, ALC 𝜃-CM generates ¬𝐸(𝑦1)
1 after the first loop and in the next;

then, the blocking condition is reached, and ALC 𝜃-CM halts.

 For the inductive case where 𝑎 ⊆ 𝑂, 𝑆2𝑁𝐹 , 𝑂 ⊬𝐶𝑀 𝛼 implies in 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼. So,

the contrapositive 𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 implies in 𝑂 ⊨ 𝛼 and ALC 𝜃-CM is sound. ∎

Theorem 3 (Completeness) There is a connection proof for “𝜀,𝑀, 𝜀”, i.e.. there exists

a derivation in which all leaves are axioms, if the ALC formula F that corresponds to the

matrix M is valid.

Proof. Analogously to the soundness proof, it suffices to prove that if 𝑂 ⊨ 𝛼 then

𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼. To show that, it is enough to demonstrate 𝑂 ⊢𝐶𝑀 𝛼 implies in

𝑂 ⊢𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼, again, by the contrapositive: 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 must imply in 𝑂 ⊬𝐶𝑀 𝛼,

when M contains cycles. 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 has two sub-cases:

a) When the Copy rule is not applied or is applied with already existent individual

names, not created by previous Copy rule applications (i.e., 𝑥𝜇
𝜃 ∈ 𝑁𝑂), there are open

subgoals which make 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼. This case is analogous to the last case: FOL CM

fails with the same open subgoals, and 𝑂 ⊬𝐶𝑀 𝛼 for this case, too. Thus, 𝑂 ⊬𝐶𝑀 𝛼.

b) The case when 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 and the Copy rule creates new 𝑥𝑖 instances, can be

shown by an inductive proof similar to the one of soundness. The idea is to show that

FOL CM loops or finishes by occur-check when blocking takes place in ALC 𝜃-CM for

the base and inductive cases. Therefore, when ALC 𝜃-CM fails after exhausting all

possible connections and 𝜃-substitutions, CM, by occur-checks and/or loops, is also

unable to find a proof, i.e., 𝑂 ⊬𝐶𝑀 𝛼.

a a

b b

Indeed, the soundness theorem has shown that there is a functional equivalence

between the two systems for the cyclic case too: ALC 𝜃-CM blocks the cases that CM

either loops or halts and vice-versa.

 Hence, 𝑂 ⊬𝐴𝐿𝐶 𝜃−𝐶𝑀 𝛼 implies 𝑂 ⊬𝐶𝑀 𝛼, and ALC 𝜃-CM is complete. ∎

6 Conclusions, Ongoing and Future Work

In the current work, ALC 𝜃- CM is introduced, a connection method for DL that presents

two novelties: (i) it replaces Skolem functions and unification by 𝜃-substitutions that

emulate the process of creating instances in the model that is typical for DL tableaux

systems; and (ii) it introduces a blocking scheme (with a new Copy rule) to deal with

cyclic ontologies in order to assure termination.

 For the inference process, it employs a normal form that minimizes redundancy in

the representation and in the proof search. Moreover, termination, soundness and

completeness were proven with the aid of these NFs, which restrict the more convoluted

cases to matrix columns of only two literals. This facilitates to portrait the

correspondence between FOL unification and 𝜃-substitution/blocking for ALC 𝜃-CM.

 For future work, we will tackle cardinality restrictions (≥/≤ 𝑛 𝑟 for ALCN and ≥/≤

𝑛 𝑟. 𝐶 for SHQ) by dealing with equality between instances. We also aim to create more

sophisticated blocking schemes for dynamic and double blocking for DL constructs like

inverse roles [7] or dealing with nominals.

Acknowledgements. The authors would like to thank Pernambuco´s state sponsoring

agency FACEPE for a grant to support the stay of Jens Otten at UFPE.

References

1. Baader, F., Calvanese, D. McGuinness, D, Nardi, D., Patel-Schneider, P. (Eds.): The

Description Logic Handbook. Cambridge University Press, 2003.
2. Bibel, W.: Automated theorem proving. Vieweg Verlag, Wiesbaden, 1987.

3. Freitas, F.: A Connection Method for Inferencing over the Description Logic ALC.

Description Logics Workshop, Barcelona, Spain, 2011.

4. Freitas, F. Melo, D., Otten, J.: RACCOON: A Connection Reasoner for ALC. Submitted.

5. Ghilardi,S,Lutz,C.,Wolter,F.:Did I damage my ontology:A Case of Conservative Extensions

of Description Logics.Proc.of 10th Int.Conf.of Principles of KR&R(KR),AAAI Press, 2006.

6. Graedel, E., Otto, M., Rosen, E.: Two-Variable Logic with Counting is Decidable. In

Proceedings of 12th IEEE Symp. on Logic in Computer Science LICS `97, 1997.

7. Horrocks, I., Sattler, U.: ‘A Description Logic with Transitive and Inverse Roles and Role

Hierarchies’. Journal of Logic and Computation 9(3):385–410, 1999.

8. Mortimer, M.: On languages with two variables. Zeitschrift fur mathematische Logik und

Grundlagen der Mathematik, 21:135–140, 1975.

9. Otten, J.:Restricting backtracking in connection calculi.AI Comm.,23(2-3):159-182, 2010.

10. Schlicht, A. Stuckenschmidt, H.: Peer-to-peer Reasoning for Interlinked Ontologies. Int.

Journal of Semantic Computing, Special Issue on Web Scale Reasoning, 2010.

11. Schmidt, R., Tishkovsky, D.: Analysis of Blocking Mechanisms for Description Logics. In

Proceedings of the Workshop on Automated Reasoning, 2007.

12. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to Reason with

OWL. ISWC 2004, LNCS v. 3298, pp. 471-485, Springer Verlag, 2004.

