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COMPRESSIONS AND EXTENSIONS

1. INTRODUCTION

This chapter introduces special techniques for enhancing proof systems in
terms both of their efficiency as of their range of applicability. These tech-
niques have been developed in the context of the implementation of the KoMeT
theorem proving system to which we will occasionally allude in the text.
Gains in efficiency are achieved through the general principle of compression
which will be one of the two main leitmotivs of this chapter while the other
concerns applications other than theorem proving in first-order logic made
possible by extensions of the underlying methods. We begin this introduction
with a general view on proof systems.

Theorem proving is achieved through searching for a derivation in a par-
ticular logical calculus of a given formula. Technically this may be seen as a
search through a graph whose nodes represent partial derivations and whose
arcs connect nodes whenever one partial derivation is a direct refinement (or
extension) of the other (cf. Figure 2 of Chapter 2). Work in theorem proving
tries to develop representations which avoid as much redundancy as possible,
minimize the work to be done in performing the involved operation, and min-
imize the amount of nodes in the search space to be considered before a proof
is found.

The connection method (Bibel, 1983) provides the basis for the most com-
pact representation of partial derivations in terms of the amount of code at-
tached to the formula to be proved that we know of. For this reason the work
pursued in our research group uses this method as the basis for developing
advanced proof systems. Some of the research results achieved in this pursuit
are realized in the system KoMeT (Bibel et al., 1994a; Bibel et al., 1994b; Bibel
et al., 1995).

The goal of such a system is to identify a set of connections in the formula
which spans it. There are numerous procedural ways to achieve this goal. The
simplest of them is called extension procedure (Bibel, 1993) (closely related
to the well-known model elimination procedure — cf. Chapter 2) which is
the basis of KoMeT. The system is programmed in Prolog in a way which tries
to avoid one of the drawbacks of big dinosauriers among existing provers,
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namely their inflexibility for modifications. High performance is not the top-
most priority in the KoMeT project as the choice of Prolog indicates. Neverthe-
less its core is realized in PTTP technology (Stickel, 1988) so as to achieve
reasonable run-times.

The lessons learnt in the past decades of AD research teach that a uni-
form basis is of great advantage for designing large and complex systems but
that not a single (and simple) search strategy suffices to achieve a satisfactory
performance. Rather one has to take into account a variety of different fea-
tures formulas may exhibit and design special strategies for each of them. It
has been the basic concept behind the development of KoMeT to integrate as
many special strategies as possible in order to approximate the behavior of an
adequate prover, a term introduced in (Bibel, 1991).

One of these features concerns the fact that formulas often exhibit redun-
dant structures in their parts so that the given formula may be reduced in
various ways before the proof search starts. These reductions realize the gen-
eral principle of compression (Bibel, 1993; Bibel, 1991) which is used in AD
research all over. Already on the level of the logical calculus there may be
more or less compressed versions of calculi (as already pointed out in the in-
troduction to this part of the book). As a rule the more compressed the calculi
are, the more suitable they are for automation. Hence our preference for the
connection calculi.

In the case of formulas their compression aims at getting a more compact
representation of essentially the same information. Some deductive systems
still fail to appreciate the importance of this part of deductive proof search.
By transformation of the formula to normal form they sometimes even expand
the formula rather than compress it. The least what has to be expected from an
advanced system is that the technique of definitional transformation (Bibel,
1993) is used which limits the expansion in a quadratic — in propositional
logic even linear — way and avoids the destruction of the formula’s original
structure. But the best solution would be to avoid an expansion altogether and
rather compress it as far as possible.

The system KoMeT offers the definitional transformation to normal form
as an option and additionally offers a sophisticated preprocessing of the re-
sulting formula which reduces the formula in this way. Since most of the
techniques used in this part have been described elsewhere (Bibel et al.,
1994a; Bibel et al., 1994b) their description will not be repeated in this chap-
ter. A special form of preprocessing is realized by database (or DB-) reduc-
tions. These are particularly effective if many facts are involved in the prob-
lem specification. Since they interact with the subsequent unification pro-
cesses they require what is called DB-unification. Both are presented in detail
in Section 2.
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Techniques similar to DB-reduction abound in AD research. Identical an-
cestor pruning, its generalization in terms of regular proofs, unit and local
lemmata, and failure caching (Letz et al., 1994) all share with DB-reduction
the same principle which is formula compression so that proof parts have not
to be repeated on similar structures over and over again. We cover in this
chapter two further techniques falling into this category. One is a proposi-
tional prover based on the Davis-Putnam procedure but generalized for non-
normal form formulas, presented in Section 3. Further, in Section 4.1, a tech-
nique for taking advantage of equivalences is shortly summarized. By making
equivalences explicit, it is possible to take over one of the most important re-
duction techniques developed for equality reasoning, namely demodulation,
to problems not explicitly noted in terms of equality. Additionally, equiva-
lences allow to strengthen the important regularity refinement.

A different category of techniques such as tautology and subsumption con-
straints may rather be seen under the aspect of information compression in
a way that the relevant information is available at the right point and sup-
ports the right decision in the selection of proof alternatives. In some cases
it also allows the application of reduction rules dynamically as the necessary
information has been collected to allow the compression of the formula. In
Section 4.2 we summarize results showing that subsumption deletion can be
successfully integrated in connection calculi: rather than comparing clauses
like in resolution-based calculi, the basic proof objects underlying the respec-
tive connection calculus — i.e. connection graphs or connection tableaux —
or only parts of them are compared via subsumption.

Apart from striving for the ultimate techniques in AD our group has also
kept a busy eye on the applications of AD. In the course of these studies it
turned out that different applications tend to demand extra features from our
systems. In all cases these features can easily be integrated into the general
system which in our case is KoMeT. We mention here three different such
applications and their extensions.

One of the most urgent applications of deduction is in programming. Ver-
ification is where most people locate the role of AD in programming. But a
much greater potential is in program synthesis which subsumes verification.
One way to realize program synthesis is by stating the programming problem
in a logical language and extract a program from a constructive proof once it
is found. So the task in our context is to enable the use of a classical theorem
prover or at least of its deductive techniques for the problem of finding con-
structive proofs. A multi-level approach for doing this has been described in
detail in (Bibel et al., 1997; Bibel et al., 1996).

Another promising application of deduction is planning. It turned out that
the most appropriate logic for planning is a resource-sensitive logic such as
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the transition logic described in detail in (Bibel, 1997). Parts of this logic have
been realized in systems for classical logic such as SETHEO.

The last application which we want to mention here is non-monotonic
reasoning. As with the aforementioned resource-oriented logic, we are faced
here with an extension to classical logic, namely the capability of drawing in-
ferences under certain consistency assumptions. This is actually what makes
this form of reasoning non-monotonic, since such assumptions may have to
be withdrawn in the light of subsequent information. Nonetheless, we will see
in Section 4.3 that this additional dimension of reasoning can be integrated
homogeneously on the level of the logical calculus. Importantly, this carries
over to the system level, as witnessed by its implementation through PTTP
technology.

In contrast to the next two sections Section 4 just surveys the results pre-
sented there because all its material has been published at other places in
detail specified in the text. On the other hand it demonstrates the breadth of
techniques necessary for striving at an adequate and versatile prover. In Sec-
tion 5 conclusions are drawn from the results presented in this chapter.

2. DB-REDUCTION AND DB-UNIFICATION

2.1. Motivation

All proof procedures with a rigid search control suffer from the fact that there
are always theorems which are worst cases for the chosen search regime but
would be easily proved with a different one. This can be illustrated with the
left part of Figure 1 picturing the search tree for some given example.
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Figure 1. Illustration of a search tree with α3 representing the successful proof

Assume our procedure follows a left-to-right control and the node labeled
3 happens to be the one leading to a successful proof. Then the proof attempts
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α1 and α2 would unsuccessfully be carried out (thus wasting possibly enor-
mous computational efforts) before encountering the successful proof α3. In
certain cases the proof attempts αi are structurally identical but differ in par-
ticular instantiations only. These are the ones of interest in the present section.
They allow the avoidance of the waste of efforts just noted with little over-
head.

In a nutshell the solution for achieving this enhancement presented in the
present section consists of separating the structural formula information from
the instantiational one whereby the latter is a set of substitutions used in a
constraint. This way the proof search has to be carried out only once since
the instantiational part can now be handled in a unificational way. In terms of
our illustration we get the right part of Figure 1, an obvious improvement.

This kind of enhancement obviously falls into the category of compres-
sion techniques as the original search tree has been compressed into a strictly
smaller one. In this case the compression was made possible by application of
unificational techniques which generally apply a lazy-evaluation or by-need
technique. A concrete example for this compression technique is the follow-
ing formula presented in Prolog-like notation.

F1 p � a1 � b1 ���
...

...
Fk p � ak � bk ���
Fk � 1 q � ak � V ���
R q � f � W ��� Z � : � q � W � Z ���
Q : � p � X � Y ��� q � f m � X ��� Y ���

The formula consists of the facts F1 ��������� Fk � 1, k 	 2, the rule R, and the
query Q. The notation f m � X � , m 	 1, abbreviates the term with m applica-
tions of the function f . The standard Prolog regime has to attempt k � 1 un-
successful alternatives (corresponding to the proof attempts α1 and α2 in Fig-
ure 1) until the successful proof (corresponding to α3) may be found. Each
of these proof attempts requires m instances of rule R, hence altogether k 
 m
instances (and � k � 1 � 
�� m � 1 � backtracking-steps). The corresponding com-
pressed program, obtained by what is called DB-reduction, is the following
one.

F
 p � U1 � U2 � : � � U1 � U2 ����� � a1 � b1 ����������� � ak � bk �����
Fk � 1 q � ak � V ���
R q � f � W ��� Z � : � q � W � Z ���
Q : � p � X � Y ��� q � f m � X ��� Y ���

In contrast to the earlier one this program requires only m instances and
no backtracking at all, because, instead of unifying the literal p � X � Y � of the

compext.tex; 9/03/1998; 14:43; p.5



6 W. BIBEL, S. BRÜNING, J. OTTEN, T. RATH AND T. SCHAUB

query with a single fact, it is memorized that such a unification binds the
variable-pair � X � Y � to one of the term-pairs of the set � � a1 � b1 ����������� � ak � bk ��� .
It remains to prove the goal q � f m � X ��� Y � , which can be done by first using m
instances of the rule R and then using the fact Fk � 1. As a result X is bound
to the constant ak and Y to the variable V . Now we have to consider that the
variable-pair � X � Y � must be unifiable with at least one of the term-pairs of
the set � � a1 � b1 ����������� � ak � bk ��� and obviously the last member of this set can
be used for this unification. So the (small) price to be paid for this improve-
ment is the constraint � U1 � U2 � � � � a1 � b1 ����������� � ak � bk ��� of F
 , which stores the
instantiational information of the original facts, and a slightly more complex
unification process (called DB-unification), which takes into account these
substitution constraints. The price is worth paying as this example and many
others from practice have demonstrated (see Subsection 2.5 below).

DB-unification was first introduced in (Bibel et al., 1987) in a preliminary
form (see also (Bibel, 1988)). A brief informal description of its technically
advanced form (using abstraction trees — see below) is contained in Sec-
tion 4.4.3 of (Bibel, 1993). The present section offers the first comprehensive
treatment which, in addition, is not restricted to DB-reduction on unit clauses.

In Subsection 2.2 we introduce definitions and notations concerning ab-
straction trees, the data structure we are using to store and handle substitution
constraints efficiently. In Subsection 2.3 we give a general definition of DB-
reduction, which merges arbitrary clauses consisting of similar literals during
a preprocessing step. DB-unification, which handles the data-structures pro-
duced by the DB-reduction is defined in Subsection 2.4. In Subsection 2.5 we
present some results on the performance of DB-reduction and DB-unification
in practice.

2.2. Preliminaries

In this subsection we provide definitions and notations needed for the defi-
nition of DB-reduction and DB-unification. We use the small letters p � q to
denote predicates, s � t for term lists, a � b � c � d for constants, f � g for functions,
capital letters U � V � W � X � Y � Z for variables. These designators may be pro-
vided with indices. Furthermore we will denote the substitution of a variable
X by a term t with X

�
t. The notation � X1 ��������� Xn � � � t1 ��������� tn � is a shorthand

for the substitutions � X1
�
t1 ��������� Xn

�
tn � .

An abstraction tree (Ohlbach, 1990) allows a compact representation of
some set of term lists (which will be used to define DB-reductions and to
represent the term lists of the substitution constraints mentioned in the previ-
ous subsection).1 For example let us consider the term lists t1

�
� X � f � a � Y � � ,

1 A short discussion of abstraction trees is also contained in Chapter 1 of Part 2.
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t2
�

� a � f � a � g � b ��� � , t3
�

� g � b ��� f � a � c � � . They may be presented as a labeled
tree such that the label of a successor node is an instance of the label of its
predecessor, as illustrated in Figure 2.

�
X � f � a � Y ���

�
a � f � a � g � b ����� �

g � b ��� f � a � c ���

�
��

�
� �

Figure 2. Tree representation of a set of term lists

The same information can be represented in an even more compact form,
because it is sufficient to state the substitutions needed to reproduce the term
lists t2 and t3 out of t1. This yields the abstraction tree of Figure 3 (where in
addition parentheses are omitted).

X � f � a � Y �
X � Y

a � g � b � g � b ��� c

�
��

�
� �

Figure 3. Simple abstraction tree

In this representation the list of variables occurring in the term list, like
� X � Y � attached to the root of the present tree, is made explicit in order to
emphasize that it represents the domain and the term lists of each leaf the
codomain of a substitution. Application of this substitutions to the term list
at the root yields the term list at the respective leaf of the original tree. For
instance, the term list t2 is obtained from this representation by application of
the substitution � X � Y � � � a � g � b � � to t1; similarly for t3 with � X � Y � � � g � b ��� c �
applied to t1. To use abstraction trees as an indexing mechanism for term lists,
the convention is adopted that only leaves (more precisely paths to the leaves)
of an abstraction tree represent term lists. With this convention the tree in
Figure 3 represents the term lists t2 and t3. In formal details abstraction trees
are defined as follows.

DEFINITION 2.1. The variable list VL � t � of a term list is the list � X1 ��������� Xn �
of the variables occurring in t ordered according to their first occurrences;
ie. to the left of the first occurrence of Xi in t only the variables X1 ��������� Xi 	 1

occur, for i
�

1 ��������� n. An abstraction tree AT is a tree whose nodes are labeled
with term lists whereby the following property holds. If N is any node in AT,
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t its label, N � an immediate successor node of N in AT, and t � the label of N � ,
then VL � t � is the domain and t � the codomain of a substitution. Any node N in
AT represents a term list T � N � obtained from the term list labeling the root R
by applying to it the substitutions on the branch from R to N. T � AT � , the set
of terms represented by AT is the set of terms represented by the leaves of AT.

The example given in Figure 3 is special insofar as it has no inner nodes,
that is, nodes other than the root and leaves. By these inner nodes the actual
indexing of the term lists represented by the tree is done. A simple example
with an inner node is given in Figure 4, whose abstraction tree represents the
term lists t1

�
� a � f � a � g � b ��� � , t2

�
� g � a ��� f � a � c ��� � and t3

�
� g � b ��� f � a � c � � .

X � f � a � Y �
X � Y

a � g � b � g � Z ��� c
Z

a b

�
��

�
� �

�
��

�
� �

Figure 4. Abstraction tree with an inner node

Since we can represent all our examples using abstraction trees without
inner nodes we will restrict the entire section to this simpler and easier-to-
read form. We refer the reader interested in aspects of the more general notion
to Chapter 1 in Volume 2 or to (Ohlbach, 1990; Rath, 1992).

To use abstraction trees for the representation of term lists, an operational
way has to be devised how to generate a generalized term list (meant to label
the root of an abstraction tree) from a given set of term lists. Such a common
generalization exists only if the term lists in question have equal length. This
is in fact the only restriction for using abstraction trees for indexing term lists
and is a harmless one for our applications.

In order to use abstraction trees as an indexing method for DB-reductions
and DB-unification, we need three operations. The first operation build-at
� TermLists � AT � builds for a given set TermLists of term lists of equal length
an abstraction tree AT, whereby duplicates or instances of term lists within
TermLists are deleted. This operation will also play a role in the definition of
DB-reductions.
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The second operation get-unified-term-lists � AT � TermList � UTermLists � is
needed in the algorithm for DB-unification and identifies all term lists in the
abstraction tree AT which are unifiable with a given term list TermList and
represents them, modified by the determined unifier, in the list of term lists
UTermLists. If no term list represented by the abstraction tree is unifiable with
the given term list, this operation creates the empty list � � . Both operations are
given in (Rath, 1992) (or may be constructed by use of operations described
in (Ohlbach, 1990)).

The third operation also needed in the algorithm for DB-unification is a
join operation, which is similar to the natural join known from databases (Ull-
man, 1982). The main difference between a join on abstraction trees and the
natural join on database entries is that unification is not involved in the lat-
ter. For illustration let us join the abstraction trees of Figure 5, where the
left abstraction tree represents the term lists t1

�
� f � a ��� g � b � � , t2

�
� f � c ��� d � ,

t3
�

� f � b ��� W � , and the right tree represents the term lists s1

�
� a � f � a � g � b ��� � ,

s2

�
� g � b ��� f � a � c � � .

f � U ��� V
U � V

a � g � b � c � d b � W

�
��

�
� �

X � f � a � Y �
X � Y

a � g � b � g � b ��� c

�
��

�
� �

Figure 5. Abstraction trees for join operation

More precisely, the join is to be performed on the second term of (each
of the nodes of) the left tree and the first term of the right one, to obtain
a list of term lists of the following kind. For instance, t1 and s2 yield t4

�

� f � a ��� g � b ��� f � a � c � � whereby the second term derives from the respective two
joined terms in t1 and s2. Formally, the join operation is denoted by get-join-
of-term-lists � AT1 � Pos1 � AT2 � Pos2 � JoinTermLists � . Here AT i denotes the
given abstraction trees, Posi, i

�
1 � 2, the positions to be joined, and JoinTerm-

Lists the resulting term lists (the empty list if there are none). Apart from
t4 the operation yields t5

�
� f � b ��� a � f � a � g � b ��� � from t3 and s1, and t6

�

� f � b ��� g � b ��� f � a � c � � from t3 and s2.
Besides the three operations just discussed we consider a special case of

abstraction trees and several notions, especially the main data structure of a
DB-term list, needed for the operations of DB-reductions and DB-unification
introduced thereafter in the subsequent sections.

DEFINITION 2.2. An abstraction tree AT is a DB-abstraction tree, if the
term list of its root node is a list of pairwise different variables. The set of
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substitutions determined by a DB-abstraction tree AT is S � AT �
�

� t �
ti

�
ti �

T � AT ��� , where t is the term list of the root node of AT.

DEFINITION 2.3. Let A be a set of DB-abstraction trees. If for each of A’s
variables there is exactly one DB-abstraction tree in A in which the variable
occurs then A is called a DB-abstraction tree set. The set S � A � of all substi-
tutions determined by a DB-abstraction tree set A is inductively defined as
follows.

1. S � A �
�

� � if A
�

� � ; otherwise
2. S � A �

�
� σ � τ

�
σ � S � AT ��� τ � S � A1 ��� , with AT � A and A1

�
A

� � AT � .
The set of term lists which can be created out of a term list t by the application
of the substitutions stored in a DB-abstraction tree set A is I � t � A �

�
� tσ �

σ � S � A ��� .
DEFINITION 2.4. If t is a term list and Σ is a set of substitutions then the
pair s

�
� t � Σ � is called a DB-term list and I � s �

�
� tσ �

σ � Σ � is the set of all
term lists represented by s.

In the following we will always use DB-abstraction tree sets to represent
sets of substitutions in DB-term lists. We also could have used another data
structure like a simple set of substitutions or a single DB-abstraction tree
instead of the DB-abstraction tree set, but as in databases it is preferable to
store information (if possible) not in one large data structure but in smaller
pieces (see Section 2.5 for more detailed discussions concerning this issue).

2.3. DB-Reduction

In this subsection we formalize the notion of DB-reduction. A detailed illus-
tration of this operation is given in Example 2.1.

EXAMPLE 2.1. The following formula in Prolog-like notation, consists of
the facts F1 � F2 � F3, the rule R and the query Q.

F1 p � g � b ��� a � b ���
F2 p � g � a ��� a � c ���
F3 p � g � W ��� a � d ���
R p � f � X ��� Y � Z � : � p � X � Y � Z ���
Q : � p � f 5 � g � a ����� a � d ���

Using DB-reduction it is possible to merge the facts F1 � F2 � F3. The first op-
eration to be applied is build-at � � F1 � F2 � F3 ��� AT � which yields the abstraction
tree shown in Figure 6.
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p � g � U1 ��� a � U2 �
U1 � U2

b � b a � c W � d

�
��

�
� �

Figure 6. Abstraction tree AT for the facts F1 � F2 � F3

Thereafter the abstraction tree AT of Figure 6 is transformed into the DB-
term list s

�
� t � � AT � � � ,2 where t is the term list of the root of AT and AT �

is identical to AT, except that the term list of the root is replaced by the list
of variables of the root node. Because I � s �

�
� p � g � b ��� a � b ��� p � g � a ��� a � c ���

p � g � W ��� a � d ��� , this DB-term list represents the facts F1 � F2 � F3. Within this
DB-term list the term list t represents the clause generated by the DB-reduction
and the DB-abstraction tree set � AT � � represents the constraints on the sub-
stitutions allowed for the variables in the literal of the clause. The Prolog-like
program obtained from the application of DB-reduction is the following one.

F p � g � U1 ��� a � U2 � : � � U1 � U2 � � I � � U1 � U2 � � � AT � � ���
R p � f � X ��� Y � Z � : � p � X � Y � Z ���
Q : � p � f 5 � g � a ����� a � d ���

After this illustration of DB-reduction its formal definition is presented
which, for a beginning, is restricted to unit clauses.

DEFINITION 2.5. Let C denote the set of all unit clauses with the same
predicate symbol p and the same polarity in a given set M of clauses. If C has
more than one element then we say M � is obtained from M by DB-reduction
if M �

�
� M �

C � � � c � whereby c
�

� t � Σ � is called DB-clause and consists of
a clause part t (which in the present case restricted to unit clauses is a unit
clause) and a set of substitution constraints Σ, with t and Σ defined as follows.

Let AT be defined by build-at � C � AT � ,3 then t is the term list of the root of
AT and Σ

�
S � AT � � where AT � is the DB-abstraction tree created from AT by

replacing the term list of the root by the variable list of the root.
If c

�
� t � Σ � is a DB-clause, then every variable V , which occurs in t and

in Σ is called a DB-variable. c represents the clauses of I � c �
�

� tσ �
σ � Σ � .

LEMMA 2.1. If M is a set of clauses and M � is created from M by the appli-
cation of DB-reductions on unit clauses, then M � represents the same clauses
as M except for unit clauses which can be deleted by subsumption.

2 We use the data structure DB-abstraction tree set to represent the set of substi-
tutions in the DB-term list.

3 Within this operation the clauses in C are interpreted as term lists.
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12 W. BIBEL, S. BRÜNING, J. OTTEN, T. RATH AND T. SCHAUB

Proof. According to Definition 2.5 DB-reduction affects unit clauses only
and factors all unit clauses with one and the same predicate symbol and of the
same polarity. According to the description of the operation build-at in Sub-
section 2.2, all subsumed clauses are deleted when building the abstraction
tree AT . The rest is obvious from Definition 2.5.

Obviously DB-clauses are a special kind of DB-term lists insofar as DB-
clauses are created by DB-reductions and so they represent a set of clauses
instead of a set of term lists. Nevertheless a single literal of the clause part of a
DB-clause together with the substitution constraints of the DB-clause can be
seen as a DB-term list, therefore DB-unification (see Subsection 2.4) needed
to handle the substitution constraints in DB-clauses correctly during the proof
search will be defined on DB-term lists. For an efficient representation of the
substitution constraints in DB-clauses we will use DB-abstraction tree sets.
In Prolog-like notation such a DB-clause c

�
� t � A � , whereby A is a DB-

abstraction tree set, is written as

t : � VL � t � � I � VL � t ��� A ���
where VL � t � is as in Definition 2.1.

We would like to extend the applicability of the idea underlying DB-
reduction to cases other than unit clauses. This will be achieved by the gen-
eralized definition below which we first illustrate with Example 2.2.

EXAMPLE 2.2. The following formula in Prolog-like notation, consists of
the facts F1 and F2, the rules R1 � R2 � R3 and the query Q.

F1 p � f n � a �����
F2 q � a � c ���
R1 q � f � W ��� a � : � q � W � a ���
R2 q � f � W ��� b � : � q � W � b ���
R3 q � f � W ��� c � : � q � W � c ���
Q2 : � p � X ��� q � X � Y ���

Since the given formula contains no unit clauses with similar literals it is
impossible to use DB-reduction in the form defined so far here. However the
formula contains three rules which suggest the application of a more general
form of DB-reduction which may be obtained in exactly the same way as
before. We apply build-at � � R1 � R2 � R3 ��� AT � which yields the abstraction tree
shown in Figure 7 from which we obtain the DB-term list s

�
� t � � AT � � � as in

Example 2.1. Its DB-abstraction tree AT � is identical to the tree of Figure 7,
except that its term list is replaced by the list of variables labeling the root.
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q � f � W ��� U1 � : � q � W � U1 � �
U1

a b c

�
��

�
� �

Figure 7. Abstraction tree AT of R1 � ����� � R3

Because we have I � s �
�
� � q � f � W ��� a � : � q � W � a ����� � q � f � W ��� b � : � q � W � b �����

� q � f � W ��� c � : � q � W � c ����� this DB-term list (or DB-clause) represents the rules
R1 � R2 � R3. The Prolog-like program obtained from the application of this gen-
eral DB-reduction is the following one.

F1 p � f n � a �����
F2 q � a � c ���
R q � f � W ��� U1 � : � q � W � U1 ��� � U1 � � I � � � U1 � ��� � AT � � ���
Q2 : � p � X ��� q � X � Y ���

After this illustration we present the formal definition of DB-reduction in the
general case which subsumes Definition 2.5.

DEFINITION 2.6. Let us call two clauses similar if they are of the form
� L1 ��������� Ln � , � L �1 ��������� L �n � , n 	 1, and if for each i

�
1 ��������� n, Li has the same

sign and the same predicate symbol as L �i.
Let C denote a set of all similar clauses in a given set M of clauses. If C has

more than one element then we say M � is obtained from M by DB-reduction if
M �

�
� M �

C � � � c � whereby c
�

� t � Σ � is a DB-clause and consists of a clause
part t and a list of substitution constraints Σ, with t and Σ defined as follows.

Let AT be defined by build-at � C � AT � ,4 then t is the term list of the root of
AT and Σ

�
S � AT � � where AT � is the DB-abstraction tree created from AT by

replacing the term list of the root by the variable list of the root.

LEMMA 2.2. If M is a set of clauses and M � is created from M by the appli-
cation of DB-reductions on clauses of arbitrary length, then M � represents the
same clauses as M except for clauses which can be deleted by subsumption
by a clause of equal length.

Proof. This lemma follows directly from the definition 2.5 and 2.6 of DB-
reductions, and the description of the operation build-at � ����� � in Subsection 2.2
in the same way as that for Lemma 2.1.

4 Within this operation the clauses in C are interpreted as term lists.
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14 W. BIBEL, S. BRÜNING, J. OTTEN, T. RATH AND T. SCHAUB

The notion of DB-reduction may be even extended to clauses which are
“partially similar” only. In such a case new literals may be added to the
clauses until the clauses become similar. To compensate this change of the
logical content unit clauses consisting of literals complementary to the added
ones have to be added to M so that by unit resolution the old matrix could
be restored. In other words, actually new connections are added to the ma-
trix and these have to be chosen such that they are isolated (the new unit
clauses do not resolve with literals originally in the matrix). As the exam-
ple � � P � a ����� � P � b ��� � Q � x ��� � demonstrates this condition of isolatedness is
not always satisfiable without some proviso. It may be satisfied even in those
cases, however, by extending the arity of literals such as the Q � x � by 1 and
inserting a new constant in all literals of the original formula and a differ-
ent new constant in the added literals, so that our example would become
� � P � a ��� � Q � d � d ����� � P � b ��� � Q � x � c ����� � Q � d � d ��� � which obviously is valid iff
the original formula is. To this formula DB-reduction as defined in Defini-
tion 2.6 may now be applied. We refer to this kind of DB-reduction as ex-
tended DB-reduction.

In this most general form, DB-reduction also enables to eliminate common
factors in different clauses which could alternatively be achieved by going
to non-normal form matrices. Since DB-reduction keeps matrices in normal
form, one can say that it provides a way to realize advantages, usually offered
only by non-normal form matrices, in normal form ones. From a different
perspective this extended form of DB-reduction makes formulas more regular
in the sense of (Bibel and Eder, 1997) and thus easier to prove.

2.4. DB-Unification

The previous subsection has introduced the operation of DB-reduction. It re-
sults in a set of clauses which may contain literals (with substitution con-
straints) of a kind not familiar to usual theorem provers or Prolog interpreters.
Therefore it is necessary to provide such provers with the capability to cope
with these literals in a logically correct way. This requires a generalized form
of unification, called DB-unification. As unification generates the most gen-
eral unifier of two terms (or term lists), DB-unification generates a most gen-
eral DB-unifier for DB-term lists, which is, roughly speaking a subset of all
most general unifiers of the term lists represented by the DB-term lists (“sub-
set” because unifiers which lead to an instance of another unifier are omitted).
In detail the definition of a most general DB-unifier is as follows.

DEFINITION 2.7. Let s1

�
� t1 � Σ1 � and s2

�
� t2 � Σ2 � be two DB-term lists

and T
�
� t �1ρ

�
ρ
�

mgu � t �1 � t �2 ��� t �1 � I � s1 ��� t �2 � I � s2 ��� . If T
�
� � then a most
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general DB-unifier of the DB-term lists does not exist. Otherwise the most
general DB-unifier of the DB-term lists is � σ � Σ � , where σ is a substitution
creating the common term structure of all term lists in T and Σ is the set of
substitutions needed to create the parts where they differ, with σ and Σ defined
as follows.

Let AT be defined by build-at � T � AT � ; then σ
�

mgu � t1 � t � , where t is the
term list of the root of the abstraction tree AT, and Σ

�
S � AT � � where AT � is

the DB-abstraction tree created from AT by replacing the term list of the root
by the variable list of the root.

If we use the data structure DB-abstraction tree sets to represent the set
of substitutions in the DB-term lists � l1 � A1 � and � l2 � A2 � , then algorithm 2.8
determines the most general DB-unifier of the two DB-term lists. The output
of the algorithm is the empty set, if there exists no most general DB-unifier
for the DB-term lists; otherwise the output is the most general DB-unifier
� σ � A � � .5 The algorithm is activated by calling mgdbu � S � A � , whereby A

�

A1 � A2 and S
�
� �

s1 � t1 � ��������� �
sn � tn � � for l1

�
� s1 ��������� sn � and l2

�
� t1 ��������� tn � .

Explanations for the functions mentioned in (7) and (8) are given thereafter.

ALGORITHM 2.8. mgdbu � S � A �
1. If

�
f � s1 ��������� sn ��� g � t1 ��������� tn � � � S , whereby f �

�
g, then

mgdbu � S � A �
�

� � ;
2. if

�
s � t � � S , where s �

�
t and s is a variable occurring in t, then

mgdbu � S � A �
�

� � ;
3. if

�
s � s � � S , then

mgdbu � S � A � :
�

mgdbu � S1 � A � , where S1 :
�

S
� � �

s � s � � ;
4. if

�
s � t � � S , where s

�
f � s1 ��������� sn � and t

�
f � t1 ��������� tn � , then

mgdbu � S � A � :
�

mgdbu � S1 � A � , where
S1 :

�
� �

s1 � t1 � ��������� �
sn � tn � � � S

� � �
s � t � � ;

5. if
�
s � t � � S , where t is a (usual) variable and s is not a (usual) variable or

t is a DB-variable and s is neither a (usual) variable nor a DB-variable,
then
mgdbu � S � A � :

�
mgdbu � S1 � A � , where S1

�
� �

t � s � � � S
� � �

s � t � � ;
6. if

�
s � t � � S , where s is a (usual) variable not occurring in t, then

6.1 mgdbu � S � A � :
�
� τ � σ � A1 � for τ

�
� s �

t � and mgdbu � Sτ � A �
�
� σ � A1 � ,

otherwise
6.2 mgdbu � S � A � :

�
� � ;

5 A DB-abstraction tree set is used to represent the substitution constraints in Σ.
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16 W. BIBEL, S. BRÜNING, J. OTTEN, T. RATH AND T. SCHAUB

7. if
�
s � t � � S , where s is a DB-variable not occurring in t, then

7.1 mgdbu � S � A � :
�

� τ � σ � A2 � for db-unifier � s � t � A � :
�

� τ � A1 � and
mgdbu � Sτ � A1 �

�
� σ � A2 � , whenever such σ � τ exist; otherwise

7.2 mgdbu � S � A � :
�

� � ;
8. if

�
s � t � � S , where s and t are DB-variables, then

8.1 mgdbu � S � A � :
�

� τ � σ � A2 � for db_join � s � t � A �
�

� τ � A1 � and
mgdbu � Sτ � A1 �

�
� σ � A2 � , whenever such σ � τ exist; otherwise

8.2 mgdbu � S � A �
�

� � ;
9. mgdbu � � ��� A �

�
� � ��� A � .

Algorithm 2.8 just presented invokes the algorithms db-unifier � V � t � A �
and db-join � V1 � V2 � A � in the steps (7) and (8), resp., whose functionality is
explained as follows. Algorithm db-unifier � V � t � A � computes all those term
lists T in the DB - abstraction tree AT � A for the DB-variable V which can
be unified with the term t at the position of V . If T

�
� � , then the result

of db-unifier � V � t � A � is the empty set; otherwise a tuple � τ � A � � is computed,
whereby τ is the most general unifier of the term lists at the roots of the ab-
straction trees AT and AT � , resulting from build-at � T � AT � � , and A � is obtained
as follows. If AT � has no nodes other than the root then A �

�
A

� � AT � , oth-
erwise A �

�
� AT � � � � A

� � AT � where AT � � is the DB-abstraction tree created
by replacing the term list of the root of AT � by its attached list of variables.

In the algorithm db-join � V1 � V2 � A � we have to distinguish two cases. If the
DB-variables V1 and V2 belong to the same DB-abstraction tree AT � A we
compute all term lists T in AT which can be unified at the positions of V1

and V2 (in the term lists of AT) and then proceed in the same way as in the
algorithm of db-unifier � ����� � . If the DB-variables V1 and V2 belong to different
DB-abstraction trees AT1 � A and AT2 � A and Pos1 is the position of V1

in AT1 and Pos2 is the position of V2 in AT2 we use get-join-of-term-lists
� AT1 � Pos1 � AT2 � Pos2 � T � to compute the term lists of the join-operation. If
T
�
� � , then the result of db-join � V1 � V2 � A � is the empty set; otherwise a tuple

� τ � A � � is computed, where τ is the most general unifier of the join of the root
term lists of AT1 and AT2 at Pos1 and Pos2 on the one hand and the term
list of the root of the abstraction tree AT � from build-at � T � AT � � on the other,
and A � is obtained as follows. If AT � has no nodes other than the root then
A �

�
A

� � AT1 � AT2 � , otherwise A �
�

� AT � � � � A
� � AT1 � AT2 � where AT � � is

the DB-abstraction tree created by replacing the term list of the root of AT �
by its attached list of variables.
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If a theorem prover together with DB-unification for the term lists of com-
plementary literals is used on a formula simplified by DB-reductions the fol-
lowing theorem holds.6

THEOREM 2.3. If F � is derived from a formula F by DB-reduction as de-
fined in Definition 2.6 then every proof of F � by a theorem prover with DB-
unification can be simulated by several instances of a theorem prover with
standard unification applied to F in parallel, and every proof of F by a the-
orem prover with standard unification can be simulated by a theorem prover
with DB-unification applied to F � .

Proof. Any proof method works on connections in the given formula. So
we can restrict ourselves to the analysis of what happens if a single connec-
tion is treated. Any connection between two clauses c and c � in F � selected
by the DB-prover may correspond to more than one connections in F . This
is because c (and c � ) may be the result of factoring the clauses c1 ��������� cm (and
c �1 ��������� c �n, resp.) by DB-reduction and between each pair ci � c j, i

�
1 ��������� m,

j
�

1 ��������� n, there is such a corresponding connection. We thus need n 
 m stan-
dard provers who explore all of these different possibilities independently,
some of which may find out that the connection is not unifiable. The proof of
the theorem follows by iteration of this analysis. Conversely, to a connection
in F there exists exactly one connection in F � to which it corresponds from
which the proof follows immediately.

Note that the stepwise simulation in this theorem does not hold for extended
DB-reductions (introduced at the end of Section 2.3) because by extended
DB-reduction new literals are imported into the formula which possibly lead
to differing proof structures.

2.5. DB-Reductions and DB-Unification in Practice

To test the usefulness of the compression and lazy-evaluation principles re-
alized by DB-reduction and DB-unification, these were integrated into the
proof system KoMeT. The tests were performed on the 2755 problems of the
TPTP-problem library (Sutcliffe et al., 1994) using three different option set-
tings for the prover with a maximum time limit of 300 seconds on a Sun
SPARCstation 20. A small selected subset of the results is shown in Table I.
All option settings included iterative deepening on the depth of the proof and
identical ancestor pruning. The only difference was that in the first setting
DB-reduction was not used (noted as “–” in the first column of Table I), in
the second setting DB-reduction in its simplest form given in Definition 2.5

6 For a more detailed proof we refer to (Rath, 1992).
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with DB-unification was used (noted “db” in the second column) and in the
third the more general DB-reduction of Definition 2.6 with DB-unification
was used (noted “db 
 ”). For each example and option run-time and number
of clauses in the corresponding DB-matrix are given.

Table I. Test results of KoMeT without and with
DB-reduction

problem – db db*

BOO003-1.p � 300 (37) � 300 (29) 29.6 (16)

BOO005-1.p 118.5 (37) 22.5 (29) � 300 (16)

BOO012-3.p � 300 (49) 94.6 (35) � 300 (20)

CAT002-4.p � 300 (27) � 300 (22) 21.0 (12)

COL052-2.p 150.3 (16) � 300 (14) � 300 (8)

COM004-1.p 5.2 (25) 2.4 (21) 4.7 (11)

FLD002-3.p � 300 (29) 75.2 (26) � 300 (22)

FLD016-3.p � 300 (32) 64.4 (26) 269.9 (22)

FLD069-1.p � 300 (32) � 300 (28) 142.6 (19)

GEO003-3.p � 300 (81) 19.5 (68) 30.9 (23)

GEO026-3.p � 300 (79) � 300 (65) 58.9 (20)

GEO059-3.p � 300 (79) 264.2 (69) 66.9 (24)

GRP013-1.p � 300 (22) 205.5 (15) � 300 (9)

GRP125-2.003.p � 300 (21) 151.4 (11) 293.1 (9)

GRP131-2.002.p 265.2 (13) � 300 (11) 120.5 (8)

KRS015-1.p 27.9 (26) 27.9 (26) 25.5 (24)

LCL076-3.p 35.9 (6) 41.3 (4) � 300 (3)

LCL143-1.p � 300 (22) � 300 (16) 59.9 (8)

LCL182-1.p 42.4 (9) 71.8 (5) � 300 (4)

MSC007-2.002.p 166.5 (16) � 300 (15) � 300 (13)

NUM003-1.p 5.6 (13) 6.6 (7) 55.5 (3)

PLA010-1.p � 300 (31) 156.0 (14) 38.3 (9)

PLA015-1.p � 300 (31) � 300 (14) 48.9 (9)

PRV006-1.p 91.6 (26) 52.7 (18) 45.2 (11)

PUZ025-1.p 88.1 (24) 72.4 (21) 21.9 (13)

SET118-7.p � 300 (237) 286.1 (196) � 300 (66)

SET563-6.p � 300 (190) � 300 (156) 140.2 (61)

SYN178-1.p � 300 (369) 94.1 (339) 124.6 (313)

SYN298-1.p � 300 (369) 198.5 (339) 207.8 (313)

TOP001-2.p 6.1 (13) 6.1 (13) 5.4 (12)

Since Table I can present only a small fragment of the results of these tests,
we note that overall it was possible to prove (out of the 3060 problems) 734
problems without DB-reductions, 778 problems with the simplest form of
DB-reduction of Definition 2.5, 774 problems with the general DB-reduction
of Definition 2.6, and 824 problems altogether (with any of the three modes).
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These data demonstrate that the simplest form of DB-reduction gives the best
results for the PTTP collection. It is relatively simple and yet has an enormous
effect in a substantial number of cases. In particular there are 90 examples in
PTTP among those provable by KoMeT which could not be proved without the
technique described in the present section. On the other hand a look into the
details of the table reveals that each mode has its advantages. For instance,
BOO012-3.p is proved by none except the simplest form of DB-reduction,
BOO003-1.p by none except general DB-reduction, and COL052-2.p by none
except the DB-reduction-free version.

The lessons to be drawn from these experiences is that in cases where the
respective reduction technique actually simplifies the problem the prover is
clearly enhanced in its performance. But there are other examples where the
efforts required for eg. the time-consuming join operation on DB-abstraction
trees slows down the prover to an extent that it fails to provide a proof at all
within the given time limit. Especially DB-reduction on general clauses gives
rise to expensive join operations on big DB-abstraction trees. In such cases
it is very useful to replace (if possible) one big DB-abstraction tree in every
DB-clause by a lot of small DB-abstraction trees. An implementation of this
splitting of DB-abstraction trees is in progress.

This splitting of DB-abstraction trees might also have a positive perfor-
mance effect if used carefully for the creation of DB-abstraction trees within
DB-unification. We optimized the DB-unification in another way by delaying
the join operations until the end of the unification process on two terms and
then calculating all join operations to be effected on two DB-abstraction trees
in a single step. Another optimization of the operations get-unified-term-lists
� ����� � and get-join-of-term-lists � ����� � is already implemented as well. The de-
scription given so far suggests to first determine all term lists which are the
results of these operations and then build a new DB-abstraction tree from
scratch. This is too time consuming. Rather, in our implementation, we take
advantage of the information in the old DB-abstraction trees during the com-
putation of get-unified-term-lists � ����� � and get-join-of-term-lists � ����� � to create
the new DB-abstraction trees.

In comparing the performance of KoMeT in absolute terms as demonstrated
by these examples an important caveat has to be taken into account. First,
by activating KoMeT’s TPTP-technology-based compiler along with a simi-
lar setting as in the first column of Table I KoMeT is able to prove a total
of 904 examples out of the PTTP list. As we mentioned earlier though DB-
reduction has been realized in a prototypical implementation in Prolog only
which necessarily is much slower (and thus less successful in total) than a
high performance theorem prover like SETHEO (Moser et al., 1997). Never-
theless the prototypical experiments demonstrate clearly that DB-reduction is
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Figure 8. The splitting step of the Davis-Putnam procedure

a necessary feature for any successful prover.

3. A NON-CLAUSAL DAVIS-PUTNAM PROCEDURE

3.1. Motivation

Decision procedures for classical propositional logic, i.e. procedures deter-
mining whether or not a given propositional formula is valid, play an impor-
tant role in intellectics, computer science and, of course, mathematical logic.
Automated theorem proving, solving hard combinatorial optimization prob-
lems, and verifying circuits in hardware design are some of the applications.

The Davis-Putnam procedure (Davis and Putnam, 1960; Davis et al., 1962)
is one of the best known and most successful decision procedures for classi-
cal propositional logic. The essential idea of this procedure consists of the
following step: assign the truth values true and false to a selected proposi-
tional variable X of the investigated formula F and simplify the resulting
formulas yielding the formulas F1 and F2, respectively (see Figure 3.1). The
original formula F is valid if and only if both resulting formulas F1 and F2

are valid. Applying this step recursively to the resulting formulas F1 and F2

yields a search tree whose leaves are marked with true or false. If all leaves
are marked with true the formula F is valid, otherwise F is not valid.

There are many implementations of the Davis-Putnam procedure, e.g. C-
SAT, LDPP (Uribe and Stickel, 1994), POSIT (Freeman, 1995), SATO (Zhang,
1993), SATX (Li, 1996), TABLEAU (Crawford and Auton, 1993). All these
implementations have in common, that they require the formulas to be proven
be given in clausal form. Since the usual transformation into clausal form is
based on the application of distributivity laws, this leads to an exponential
increase of the resulting clausal form in the worst-case. Using a definitional
transformation (Eder, 1992; Plaisted and Greenbaum, 1986) yields (at most)
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a linear increase of the resulting formula’s size at the expense of introducing
new (propositional) variables.

The aim of this section is not to present yet another implementation of
the Davis-Putnam procedure, but to introduce a non-clausal version of this
method. By generalizing this procedure to arbitrary formulas we avoid any
transformation steps. Thus we avoid any increase of the size of the formula
and shorten the search tree considerably. Furthermore, the application of an
additional split rule becomes possible which further reduces the search space.

During the proof search formulas are represented as matrices. A matrix is
not only a compact representation of a formula but also one of the correspond-
ing search space. In the following we will show how the matrix representation
of arbitrary (non-clausal) formula may serve as a basis for a generalized non-
clausal form decision procedure which results in a substantial compression of
the search space.

3.2. A Non-Clausal Davis-Putnam Procedure

For completeness we begin by defining the syntax of (arbitrary) formulas and
their matrices in propositional logic.

DEFINITION 3.1. Formulas are defined inductively as follows. Any propo-
sitional variable A is a formula. If F and G are formulas then � � F � , � F � G � ,
� F � G � and � F � G � are also formulas, with the logical connectives � (nega-
tion), � (conjunction), � (disjunction) and � (implication).

A literal is either a variable or its negation. The negation L̄ of a literal L
is defined as L̄

�
A, if L

�
� A (for some variable A), otherwise L̄

�
� L.

A signed formula is a pair � F � p � consisting of a formula F and a polarity
p, where p � � 0 � 1 � .

The matrix of a signed formula � F � p � is inductively defined by way of
Table II. � MG � , � MH � and � MG � MH � therein are called clauses. The matrix
of a formula F is the matrix of the signed formula � F � 0 � . A matrix is valid iff
the corresponding formula is valid.

REMARK 3.1. Matrices of the form M
�
��������� � � C1 ��������� Cn � ��������� � can be

simplified to M �
�
��������� C1 � ������� Cn ������� � where C1 ��������� Cn are clauses. Clauses

of the form C
�
��������� � � M1 ��������� Mm � ��������� � can be simplified to C �

�
��������� M1 �

������� Mm � ����� � where M1 ��������� Mm are matrices.

In the (usual) clause-based Davis-Putnam procedure a matrix consists of
a set of clauses, where each clause is a set of literals. In our non-clausal
approach a clause is a set of matrices, where each matrix is either a literal or
a set of clauses. As in the normal form case we can visualize a matrix M as a
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Table II. Definition of the matrix of a signed formula

� F � p � matrix of � F � p � where MG / MH

is the matrix of

� A � 0 � , A a variable ��� A ��� –/–

� A � 1 � , A a variable ����� A ��� –/–

����� G ��� p � MG � G � 1 � p � / –

��� G � H ��� 1 � ��� MG � ��� MH ��� � G � 1 � / � H � 1 �
��� G � H ��� 0 � ��� MG � ��� MH ��� � G � 0 � / � H � 0 �
��� G � H ��� 0 � ��� MG � ��� MH ��� � G � 1 � / � H � 0 �
��� G � H ��� 0 � ��� MG � MH ��� � G � 0 � / � H � 0 �
��� G � H ��� 1 � ��� MG � MH ��� � G � 1 � / � H � 1 �
��� G � H ��� 1 � ��� MG � MH ��� � G � 0 � / � H � 1 �	

� 	

� �
�

A
B � � � C � �

C��� � A � � � B �����
���� D � � � D ���
����� �����

Figure 9. The matrix of ����� A ��� B � � C ��� � C � A � B ��� � � D ��� D �

two-dimensional matrix by placing its clauses horizontally and the matrices
of each clause vertically.

EXAMPLE 3.1. Consider the formula F
�

��� � A � � B � � C � � � C � A �
B ���!� � D � � D � . The (simplified) matrix of F is � � � � A � B ��� � � C ��� � C � � � � A ���
� � B � � � ��� � � D � � D � � � � . The two-dimensional visualization of this matrix is
given in Figure 9.

Within the negation normal form, a clause is interpreted as the conjunction
of its matrices and a non-variable matrix is interpreted as the disjunction of
its clauses. Therefore a clause is true iff all its elements are true. A matrix is
true iff at least one of its clauses is true. A clause/matrix which is not true is
false.

OBSERVATION 3.1. The empty matrix � � is false, the empty clause � � is
true. A matrix ��������� � ��������� � containing the empty clause is true. A clause
��������� � ��������� � containing the empty matrix is false.

The non-clausal Davis-Putnam procedure is defined in Figure 10. L de-
notes a literal and litM is the set containing all literals of M. #diff � M � � M � � �
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input: matrix M representing an arbitrary formula F
output: true, if F is valid; false otherwise

begin NCDP � M �
if M ����� then return false;
if ��� � M then return true;
if � L � � M then return NCDP(MREDUCEL̄ � M � ); /* UNIT */
for all L � litM with L̄

�
� litM do M : � MREDUCEL̄ � M � ; /* PURE */

if M ��� C1 � ��� � � C j � 1 ��� M1 � M2 � � C j � 1 � � ��� � Cn � and
#diff � M � � M � � ��� 2 for some j

then if NCDP � � C1 � � ��� � C j � 1 ��� M1 � � C j � 1 � ����� � Cn � ��� true and /* beta- */
NCDP � � C1 � � ��� � C j � 1 ��� M2 � � C j � 1 � ����� � Cn � ��� true /* splitting */
then return true else return false;

select L � litM ;
if NCDP(MREDUCEL � M � )=true and /* splitting */

NCDP(MREDUCEL̄ � M � )=true
then return true else return false;

end NCDP.

Figure 10. The non-clausal Davis-Putnam procedure

is the number of different variables which occur only in M � or only in M � � .
Calling NCDP � M � returns true, if the matrix M is valid, otherwise it returns
false. Some explanations of the algorithm follow.

If the matrix M is an empty set (or contains an empty clause), false (or
true, respectively) are returned. Otherwise a literal L occuring in M is selected
and true, respectively false, is assigned to it (splitting). Only if both resulting
matrices are valid, the matrix M is valid.

Assigning true to all occurrences of L (and false to L̄) in the matrix M
and returning the resulting simplified matrix is performed by the procedures
MREDUCEL � M � and CREDUCEL � C � (see Figure 11). MREDUCEL � M � per-
forms this assignment for the matrix M. If the matrix is the literal L (or L̄),
the truth values true (i.e. � � � � ) (or false, i.e. {}, resp.) are returned. Other-
wise the assignments of its clauses are evaluated. If there is a true clause (i.e.
� � ), the whole matrix is deleted and true (i.e. � � � � ) is returned. We call this
step matrix elimination. It is illustrated in the first part of Figure 12. Notice
that the literal deletion step in the clause-based approach is a special case of
the matrix elimination step (where the matrix M is a literal).

Consider, for example, the matrix in Figure 13 (where P, Q, R are literals
and M is a matrix) along with its partial clausal form. In the clause-based
procedure the assignment of true to the literal R will only delete the literal R.
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begin MREDUCEL � M �
if M � L then return ������� ; /* assign true */
if M � L̄ then return ��� ; /* assign false */
if M is a literal then return M;
M1 : � � C ��� C � � CREDUCEL � C � and C � M � ;
if ��� � M1 then return ������� ; /* matrix elimination */
return � C � C � M1 and C

�
��������� � ; /* simplify */

end MREDUCE.

begin CREDUCEL � C �
C1 : � � M ��� M � � MREDUCEL � M � and M � C � ;
if ��� � C1 then return ������� ; /* clause elimination */
return � M � M � C1 and M

�
� ������� � ; /* simplify */

end CREDUCE.

Figure 11. The procedures MREDUCE and CREDUCE

��������
�

...
M ��

����� [ ] �������
M � �

...

�
							
�

�
����
�

...
M �
M � �

...

�
			
�

����
� � � C �

���
�

...
[ ]
...

�
		
� C � � � �

�
			
� � �� � � C � C � � � �

��
Figure 12. Matrix elimination and clause elimination

��� � � P � �Q � � R � �
M � � � �

P
M � �

Q
M � �

R
M ���

Figure 13. An example of a matrix for matrix elimination
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In the non-clausal procedure the entire matrix
� �

P � �
Q � �

R � � will be deleted
resulting in M as the remaining problem. This means that additional proof
steps have to be performed in the clause-based procedure which are not nec-
essary in the non-clausal procedure. On the other hand each literal deletion
step in the clause-based procedure can be simulated by a corresponding ma-
trix elimination step in the non-clausal approach.

CREDUCEL � C � performs the assignment of true to the literal L for a clause
C, i.e. the assignments of its matrices are evaluated. If there is a false matrix
(i.e. � � ), the whole clause is deleted and false (i.e. � � � � ) is returned. Like
in the clause-based procedure we call this step clause elimination which is
illustrated in the second part of Figure 12.

Before splitting the matrix, NCDP performs the unit clause reduction rule
(UNIT) and the pure literal reduction rule (PURE) as in the standard Davis-
Putnam procedure. It employs again the procedures MREDUCE and CRE-
DUCE for that purpose too. In addition a second form of splitting is employed
which is called beta-splitting rule and is illustrated in Figure 14. It is justified
by the following lemma.

LEMMA 3.1. A matrix M
�

� C1 ��������� C j 	 1 � � M1 � M2 ��� C j � 1 ��������� Cn � is valid
iff M �

�
� C1 ��������� C j 	 1 � � M1 ��� C j � 1 ��������� Cn � and M � �

�
� C1 ��������� C j 	 1 � � M2 ���

C j � 1 ��������� Cn � are valid.
Proof. According to the main theorem of the connection method (Bibel,

1987a) a matrix is valid iff each path through it is complementary (i.e. con-
tains a connection). The lemma does nothing but partitioning the set of paths
through the entire matrix in 2 disjoint subsets.

Whereas matrix elimination and clause elimination are the basic steps of
the non-clausal proof procedure and necessary to guarantee both correctness
and completeness, the beta-splitting rule is additionally included only to re-
duce the search space even more. The search space (i.e. the complexity) of
our basic procedure is essentially determined by the number of different vari-
ables in the matrix M. Since every elimination of a variable splits the matrix
into two smaller ones, the worst-case complexity is t � M �

�
2# � M � where # � M �

is the number of different variables in M. The aim of the beta-splitting rule is
to reduce this number of different variables by splitting M into two matrices
M � and M � � as shown in Figure 14.

Recall that #diff � M � � M � � � is the number of different variables which occur
only in M � or only in M � � . Then t � M �

�
2# � M �

�
2

1
2 � # � M � � � # � M � � � � #diff � M ��� M � ����� .

Suppose # � M � �
�

# � M � � �
�

m, then we obtain t � M �
�

2m � 1
2 #diff � M � � M � � � . The

complexity to prove both resulting matrices is t � M � � � t � M � � �
�

2# � M � � � 2# � M � � ��
2m � 1. This means, if their are more than 2 different variables occurring
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unitlength0.16mm

�
C1 ����� C j � 1

�
M1

M2 � C j � 1 � ��� Cn ��
� �

�
� �� C1 ��� � C j � 1 �M1 � C j � 1 � ��� Cn � � C1 ����� C j � 1 �M2 � C j � 1 ��� � Cn �

Figure 14. The beta-splitting rule

only in M � or only in M � � (i.e. #diff � M � � M � � � � 2), the application of the beta-
splitting rule will reduce the complexity of our problem. A recursive appli-
cation of the beta-splitting rule can even shorten exponential proofs to linear
ones (see example in the next subsection).

EXAMPLE 3.2. Consider the formula F
�

��� � A � � B � � C � � � C � A �
B ��� � � D � � D � . A non-clausal proof of this formula is given in Figure 15. We
mention that the clausal proof of this example consists of 76 literals whereas
the non-clausal proof only needs 26 literals (as the reader may verify).

3.3. Some Experimental Results

In the following we will compare the performance of our non-clausal proof
procedure to a clause-based Davis-Putnam prover. For this purpose we use
a Prolog implementation of our non-clausal proof procedure and compare its
performance with that of the Davis-Putnam prover of the KoMeT system (Bibel
et al., 1994a).7 As mentioned in the introduction KoMeT is also implemented
in Prolog so that we get a fair comparison. Moreover it is one of the few
theorem provers providing not only the standard transformation into clausal
form, but also various definitional transformations (Eder, 1992; Plaisted and
Greenbaum, 1986).

In Table III the first column contains the name of the problem, the next two
columns contain the times used by the Davis-Putnam prover of KoMeT with
the standard transformation (“DPstandard”) as well as the definitional trans-
formation (“DPdefini”), and the last column contains the time used by our
prover ncDP. Times are measured on a Sun SPARCstation 10 with ECLiPSe
Prolog and are given in seconds, where “ � 600” means that no proof was
found within 600 seconds.

7 The Prolog code of the non-clausal implementation (which is less than 3 kBytes)
can be found in (Otten, 1997) or on the WWW http://www.intellektik.informatik.tu-
darmstadt.de / � jeotten/ncDP.
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F
�

��� � A � � B � � C � � � C � A � B ��� � � D � � D �

�
representation as matrix	

� 	

� � �

A
B � � � C � �

C� � � A � � � B � � � �� � D � � � D � �
����� �����

�
�

�
�� �

beta-splitting

� � � � � � � � � � ���� �
A
B � � � C � �

C� � � A � � � B ����� � � � D � � � D � ��� �
D
�
true

� � � D
�
false� � � � � � � ��

�
�� �
A
�
true

� � � � � � � � � � ���

A
�
false

� � B � � � C � �
C� B � � � � C � � � C � �

�
�
�� �

B
�
true

� � � � � � � � � ���
B
�
false

���C
�
true � � � C

�
false

� � C � � � C ��� ��� C � � � C ���
� � � � � � � �

���C
�
true � � � C

�
false

���C
�
true � � � C

�
false� � � � � � � � � � � � � � � �

Figure 15. Non-clausal proof of the formula ����� A � � B � � C � � � C � A � B ���
� � D ��� D �

We start with formulas which are in clausal form, namely the “complete”
formulas comn (containing n distinct variables) and the “pigeonhole” formu-
las pigeonn (n � 1 pigeons into n holes). As we see ncDP is implemented
roughly as well as, actually slightly better than, DPstandard. DPstandard ap-
plies PURE reduction after each splitting step while ncDP dispenses with
application of PURE (in a sense subsumed by beta-splitting) except for a sin-
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Table III. Test results

name DPstandard DPdefini ncDP

com8 3.30 59.45 1.38

com9 7.81 244.67 4.05

com10 19.10 � 600 11.73

pigeon4 0.75 1.68 0.53

pigeon5 5.80 5.58 4.00

pigeon6 80.10 26.28 33.21

ft6 31.69 0.72 0.43

ft8 � 600 2.72 2.46

ft10 � 600 13.60 13.63

samp10 64.36 2.34 � 0.01

samp12 451.89 9.85 0.01

samp14 � 600 46.52 0.02

ipell1(f) 0.50 0.42 0.01

ipell4(f) 0.60 0.40 0.01

ipell10(t) 0.28 0.53 0.05

ipell12(f) � 600 81.18 2.29

ipell14(f) 1.88 0.60 � 0.01

ipell17(f) 10.92 1.51 � 0.01

ipell71a(t) 0.21 0.18 � 0.01

ipell71b(f) 5.90 0.72 0.05

ipell72a(t) 0.28 0.77 0.11

ipell72b(t) 0.83 2.05 0.56

dan1(f) � 600 � 600 0.86

dan2(t) � 600 � 600 0.76

dan3(f) � 600 80.18 2.31

gle one to the initial matrix. This may lead to some overhead in DPstandard
and thus explains why even in the case of normal form matrices ncDP may
have an advantage. Conversely, ncDP can simulate any DPstandard proof for
normal form problems without any overhead in general. The generally poor
performance of DPdefini is explained by the overhead of introducing defini-
tional variables and their definitions which mostly becomes useless for for-
mulas in clausal form. Exceptions, like pigeon6, are explained by the fact that
DPdefini replaces equal subformulae by a single variable which may lead to
shorter proofs.

The formulas ftn in Table III are of the form � � � p1
� � p2

� ����� � pn 	 1
�

pn � ����� � � � ����� � p1
� p2 � � p3 � ����� � pn � , the formulas sampn are of the

form ��� p1 � p1 � � � p2 � p2 � � ����� � � pn � pn ��� . As we see both, DPdefini
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and ncDP, outperform DPstandard in these examples in a significant way,
providing proofs also in cases where DPstandard fails. The interesting fact,
however, is that even DPdefini is outperformed by orders of magnitude.

In (Korn and Kreitz, 1997) the intuitionistic validity of a propositional
formula F is decided by translating it into a formula F � which is classi-
cally valid iff F is intuitionistically valid. The resulting formulas are strongly
in non-clausal form. We have applied this translation to the (propositional)
formulas in (Pelletier, 1986) to decide, whether they are intuitionistically
valid.8 The resulting formulas are ipelln where n is the problem’s number
according to (Pelletier, 1986). The formulas dan1, dan2 and dan3 are the
corresponding transformations of the formulas ��� a � b � � c � � ��� d � e � �
b � � ��� g � h � � e � � c, ��� a � b � � c � � ��� d � e � � b � � ��� g � a � � e � � c
and ��� p � q � � r � � � p � � q � r ��� , respectively. The additional character
after the name of each formula indicates if it is valid (“t”) or not (“f”). Ta-
ble III again demonstrates the excellent performance of ncDP in comparison
with both competitors. Altogether these experimental results show that the
transformation to clausal form may yield formulas which are almost impossi-
ble to prove, especially if the standard transformation to clausal form is used,
while ncDP is still able to prove them easily.

In conclusion we summarize the three main advantages of the non-clausal
proof procedure as follows.

1. Avoidance of the transformation into any clausal form. This transforma-
tion is sometimes not feasible or the resulting formula is too large for
the prover to find a proof. Even if we use the definitional transformation
additional variables are introduced which still increase the complexity of
the problem in a noticeable way.

2. Application of matrix elimination steps. This leads to formulas which are
smaller in comparison with those obtained by the corresponding literal
deletion performed on the corresponding formulas in clausal form (as
demonstrated by the example further above).

3. Application of the beta-splitting rule. Especially in the case of formulas
which represent independent problems, this is an essential technique (see
sampn examples above). Beta-splitting can shorten proofs from exponen-
tial (in the length of the input formula) to linear ones.

8 In Table III only the more difficult formulas are presented. For all other formulas
the proof took less than 0.5 seconds for each prover.
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4. EQUIVALENCES, SUBSUMPTION, DEFAULT REASONING

In the present section three different topics are surveyed in an illustrative way
only since the technical details are already published elsewhere (as specified
within the text). The first two are further instances of the general leitmotiv of
compression of this chapter while the last one illustrates how classical proof
techniques can be exported to extended logics.

4.1. Equivalences

An inference mechanism working on a specific problem representation usu-
ally has no access to information which is only implicitly included in the
representation of a formula. For instance, proof systems which apply a trans-
formation of problems into clausal form, cannot exploit the information about
equivalences which may be included implicitly in the resulting clause set.
An interesting aspect of equivalences, however, is their use for simplifica-
tion based on the fact that equivalence of literals is closely related to equality
of terms. Given a literal-equivalence A � B, a literal B might be replaced (or
demodulated) by A if A � B holds for some Noetherian ordering � (cf. (Bach-
mair and Ganzinger, 1992)). Hence, such a use of equivalences would allow
to transfer reduction techniques developed for equality reasoning to problems
not noted in terms of equality.

In this vein, a calculus with logical equivalence was proposed in (Socher-
Ambrosius, 1989; Socher-Ambrosius, 1990). It combines resolution with the
possibility to derive literal-equivalences and to use them as rewrite rules.
In particular, it was shown that the reduction part of a corresponding cal-
culus can be considerably improved by literal demodulation. In the case of
top-down backward-chaining connection calculi (instead of saturation calculi
based on resolution), the situation is more complicated since a straightfor-
ward application of demodulation techniques would result in an incomplete
calculus. However, as we have shown in (Brüning, 1995) a careful exploita-
tion of equivalences is also feasible in such calculi and can result in enormous
reductions of the search space.9

The basic idea of (Brüning, 1995) is to treat equivalences and the remain-
ing clauses of a problem specification separately. That is, given a clause set
S � Cl � E � (where E denotes a set of literal-equivalences and Cl � E � denotes
the clausal representation of E ), only clauses from S are used for the con-
struction of connection tableaux, whereas the elements of E are used for sim-

9 In this and the following subsection we use connection tableaux instead of ma-
trices as basic proof objects which according to Chapter 2 amounts to a negligible
representational difference.
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plifying the elements from S . Clearly this simple separation is not sufficient to
obtain a complete calculus. To retain completeness one has to introduce two
new derivation steps. The first one is the so-called equivalence step which al-
lows to replace an open goal L by a literal K in case L is equivalent to K (wrt
E ).10 The second one is the so-called L-paramodulation step which allows to
test (via ordered literal-demodulation) whether a set of literal equivalences is
unsatisfiable.

One might object that the introduction of these new inference steps makes
a refined handling of equivalences useless. Fortunately this is not the case.
On the one hand, the simplification of the input clauses by demodulation can
reduce the search space considerably. On the other hand, equivalences can
be used to strengthen the important regularity restriction: Instead of requiring
that no branch contains two identical literals, one can demand that, given a
set of equivalences E , no branch contains two literals which are equivalent
wrt E . A connection tableau satisfying this condition is called E-regular wrt
E , or E -regular for short.

The following example (taken from (Brüning, 1995)) illustrates the use-
fulness of our approach.

EXAMPLE 4.1. Consider the clause set S :

� 1 � � q � f n � a ����� � 4 � � p � Y ��� � p � f � Y �����
� 2 � � q � V ��� � p � V ��� � 5 � � p � f � Z ����� � p � Z ���
� 3 � � p � U ��� � q � f � U ����� � 6 � � � p � a ���

Clauses (4) and (5) encode the literal equivalence E
�

p � f � Y ��� � p � Y � .
Rewriting S with E, clauses (4) and (5) become tautological and are removed
from S . Now, consider a derivation with top-clause � � p � a ��� . It is easy to
verify that any derivation applying extension steps using clauses (2) and (3)
to build up the term f n � a � is pruned (because the resulting connection tableau
would not be E-regular). Therefore, the only possibility to derive the open
goal � p � f n 	 1 � a ��� (for which a subproof consists of two extension steps with
clauses (1) and (3)) is to apply an equivalence step. Considering the original
clause set, this means that only clauses (4) and (5) are used for this purpose.
This reduces a search space of exponential size (in n) to one of linear size.11

An important aspect which has not been mentioned yet is the generation
of equivalences. In case literal-equivalences are not available from the begin-
ning, the ability to generate equivalences in the course of a deduction is an

10 As shown in (Brüning, 1995), the use of equivalence steps corresponds to a
restricted use of extension steps with clauses from Cl � E � .

11 Note that in case only the “ordinary” regularity restriction is employed, the size
of the pruned search space remains exponential.
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important requirement. In the case of top-down backward-chaining calculi, it
is shown in (Brüning, 1995) that this can be achieved by analyzing connection
tableaux. Basically, the idea is to make use of the fact that a set of implica-
tions � L1 � L2 ��������� Ln 	 1 � Ln � Ln � L1 � on the one hand expresses that the
literals Li are pairwise equivalent but, on the other hand, if used successively
in a derivation, result in a non-regular connection tableau (because in order
to solve L1, the same goal is generated as subgoal). Hence, new equivalences
can be extracted from connection tableaux which are not E-regular.

As an example, consider the clause set � � p � X ��� p � f � X ������� � � p � X ��� � p � f n

� X ����� � . It can be shown that this set is unsatisfiable if n is even. However,
the proof is not trivial at all — at least for top-down backward-chaining cal-
culi. However, after few inference steps, it is possible to generate the equiv-
alence p � X � � p � f � X ��� from a non-regular connection tableau (with depth
5). Using this equivalence, the above clause set can be rewritten to the set
� � p � X ����� � � p � X ��� � , which is obviously unsatisfiable.

The mechanisms sketched in this section have been implemented in a pro-
totypical proof system using Prolog as programming language. Some promis-
ing results were achieved. For example, the clause set used in the previous
paragraph can be solved for n

�
20 in 2 seconds on a Sparc Station 1, which is

quite impressive for a top-down backward-chaining calculus. For more exam-
ples illustrating the usefulness of our approach we refer to (Brüning, 1995).

There are two directions to generalize the achieved results. The first one is
to consider arbitrary equivalences rather than literal-equivalences. Such an
approach was presented in (Lee and Plaisted, 1990) with CLIN (Lee and
Plaisted, 1992) as the basic calculus (which is not a backward-chaining cal-
culus). There, the use of definitions as rewrite rules was proposed and a re-
markable improvement of CLIN was achieved. However, completeness issues
and the possibility to derive new equivalences were not considered. The sec-
ond direction for generalization is the use of conditional equivalences. This
would be similar to the use of conditional rewrite rules in the terminology of
rewriting.

4.2. Subsumption

Subsumption deletion (eg. see (Chang and Lee, 1973; Loveland, 1978)) is
the most effective mechanism to avoid logical redundancies in resolution-
based calculi. One distinguishes two basic kinds of subsumption: forward-
subsumption discards newly generated clauses which are subsumed by al-
ready existing clauses whereas backward-subsumption removes old clauses
which are subsumed by new ones. Although subsumption tests can be rather
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expensive, these mechanisms are in many cases inevitable in order to find a
refutation.

Such reduction mechanisms, however, are not applicable in a straightfor-
ward manner in backward-chaining connection calculi.12 This is because such
calculi do not enumerate derivable clauses but try to find a proof by enumer-
ating derivations. Needed are therefore mechanisms which aim at avoiding
a derivation if the possibility to extend it to a proof would imply the same
possibility for a different and (hopefully) smaller derivation. Prominent ex-
amples of such mechanisms are the so-called identical ancestor check and
its generalization, regularity, which are successfully used in several theorem
provers (eg. see (Stickel, 1988; Bayerl et al., 1992)).

In (Baumgartner and Brüning, 1997) we studied a further possibility to
avoid redundant derivations, which is mostly neglected in connection with
top-down backward-chaining calculi: the use of adapted forms of subsump-
tion which compare two connection tableaux (or parts of them) in order to
check whether the derivation generating the first connection tableau is re-
dundant w.r.t. the derivation generating the second one. In case clause sets
are restricted to Horn clauses, this approach has been extensively studied in
(Bol et al., 1991) (in the context of SLD-resolution). There it is shown that
whenever the set of open goals after applying a sequence of inference steps
d1 ��������� dn is subsumed by some former set of open goals (that is the set of
open goals occurring in the connection tableau generated after some d j with
j � n), the last inference step, dn, can be withdrawn. In case of arbitrary (i.e.
non-Horn) clause sets, however, it is no longer sufficient only to compare sets
of open goals. This is due to the fact that ancestor goals (i.e. A-literals in
Loveland’s terminology (Loveland, 1978)), which may become important to
perform reduction steps, are ignored. Hence, a first step to retain complete-
ness would be to define a subsumption relation on tableaux which compares
open goals as well as all possible ancestors. However, it becomes clear quite
immediately that without further refinements such a proceeding would be
(rather) useless since a connection tableau T2 generated from a connection
tableau T1 usually contains more (and different) ancestor goals than T1.

In (Baumgartner and Brüning, 1997), we proposed two approaches to
overcome this problem. Both of them provide criteria which allow to iden-
tify ancestor goals that can be safely ignored as potential candidates for the
application of reduction steps. The first and more important one is based on
the disjunctive positive refinement. This refinement (which is a generalized
version of Plaisted’s positive refinement (Plaisted, 1990)) restricts reduction
steps to those that use a positive ancestor goal from clauses containing at least

12 See Footnote 9.
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two positive literals (such literals are called disjunctive positive) and therefore
allows to ignore all negative ancestors. The second approach is to predeter-
mine which ancestors cannot be used for reduction steps in order to solve a
goal G. This is achieved by the concept of reachability originally proposed in
(Neugebauer, 1992) (in a different context).

With these two approaches at hand, (Baumgartner and Brüning, 1997)
provides several pruning techniques based on subsumption of connection
tableaux. Besides a generalized version of the aforementioned technique for
Horn-clause sets (which can be seen as a kind of forward subsumption), a
kind of backward subsumption is introduced, which prunes a derivation D1

if its connection tableau is subsumed (in the above sense) by a connection
tableau of a derivation D2 which is generated after D1 in the course of the
deduction process. This requires a new organization of the proof process:
instead of constructing one connection tableau by guessing inference steps
and backtracking on failure, all connection tableaux that are built are stored
explicitly. The resulting calculus is a saturation procedure which allows to
delete all (forwardly and backwardly) subsumed connection tableaux.

Apart from subsumption techniques comparing entire connection tableaux,
(Baumgartner and Brüning, 1997) also introduces the so-called T-context
check which only takes a single tableau branch into account.13 It prevents
derivations where a goal has to be solved which is equally, or more, “com-
plicated” than some of its ancestor goals. Obviously, the complexity of open
goals cannot simply be compared via subsumption. In addition, one has to
take care of variable dependencies to other open goals and, as pointed out
above, ancestor goals which might become important for the application of
reduction steps. An interesting aspect of the T-context check is its indepen-
dence of the computation rule. This is roughly speaking due to the fact that
its definition is based on the connection tableau generated by any derivation
rather than a particular one.14

To illustrate the potential of the proposed techniques, comprehensive re-
sults achieved with two prototypical proof systems are presented in (Baum-
gartner and Brüning, 1997). The first proof system (named “The_Mission”)
implements the aforementioned variants of forward and backward subsump-
tion whereas the second proof system implements the T-context check. It
turned out, that the number of connection tableaux to be considered (and
therefore the required inference steps and time to find a proof) can in many

13 In the context of SLD-resolution a related technique has been proposed in
(Besnard, 1989b) and further developed in (Bol et al., 1991).

14 Note that there may be many different derivations that generate the same
tableau.
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cases be considerably reduced (with both systems). As expected, the pruning
power of subsumption as used in The_Mission is in fact stronger than the one
of the T-context check. However, the T-context check can be implemented
very easily without resulting in high computational overheads (what is some-
times the case for the mechanisms used in The_Mission). Therefore it might
not only be interesting to improve the implementation of The_Mission; addi-
tionally it might be worthwhile to think about an extension of the T-context
check which retains its simplicity (in view of an efficient implementation)
and covers more of the cases were the mechanisms used in The_Mission can
be applied successfully.

A number of further results reported in (Baumgartner and Brüning, 1997)
deal with the relationships between subsumption-based and other refinements.
In particular, the compatibility with restricted variants of regularity has been
studied.15 It turned out that the presented techniques can be safely combined
with blockwise regularity, a restricted form of regularity, which “only” re-
quires that two literals on a branch must be different unless there is a disjunc-
tive positive literal between them or both are themselves disjunctive positive.

4.3. A case-study on nonstandard inferences:
Query answering in default logics

Classical logic provides already by itself a powerful system for knowledge
representation and reasoning, offering at once a language, a semantics and
highly efficient reasoning methods. Nonetheless one often needs extended
logical formalisms for modeling the manifold applications to be dealt with by
intelligent systems. Once such an extension is conceived, one can then draw
on the large experience gathered on implementations for classical logic for
obtaining a corresponding efficient reasoning system. Among numerous such
approaches, serving various purposes, we find those dealing with reasoning
from incomplete knowledge exemplarily described in this section.

To be more precise, we detail an extension of clausal connection calculi
for handling incomplete world descriptions by means of default information.
For this, we have chosen Reiter’s default logic (Reiter, 1980), one of the most
prominent approaches to default reasoning, as a point of departure. Since its
introduction, it has proven to be extremely valuable for formalizing default
reasoning in various domains. Among others, it has been applied to diag-
nosis (Reiter, 1987), natural language (Mercer, 1988), inheritance networks

15 Note that due to the incompatibility of the positive refinement with unrestricted
regularity, the techniques presented in (Baumgartner and Brüning, 1997) cannot be
compatible with this restriction, too.
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(Etherington and Reiter, 1983), terminological logics (Baader and Hollunder,
1992), and databases (Cadoli et al., 1994).

Default logic augments classical logic by default rules that differ from
standard inference rules in sanctioning inferences that rely upon given as
well as absent information. Knowledge is represented in default logics by
default theories � D � W � consisting of a consistent set of formulas W and a set
of default rules D. A default rule A :B

C has two types of antecedents: A pre-
requisite A which is established if A is derivable and a justification B which
is established if B is consistent. If both conditions hold, the consequent C is
concluded by default. A set of such conclusions (sanctioned by default rules
and classical logic) is called an extension of an initial set of facts: given a
set of formulas W and a set of default rules D, any such extension E is a de-
ductively closed set of formulas containing W such that, for any A :B

C � D � if
A � E and � B �� E then C � E � 16

In what follows, we are actually interested in implementing the basic
approach to query-answering in default logic that allows for determining
whether a formula is in some extension of a given default theory.17 For this
endeavor, we follow an approach to default query-answering proposed in
(Schaub, 1995). This approach furnishes a mating-based characterization of
default proofs inside the framework of the connection method (Bibel, 1987b).
As shown in (Schaub, 1995; Schaub et al., 1996), this approach is espe-
cially qualified for implementations by means of existing automated theorem
provers, since it integrates the notion of a default proof into a calculus for
classical logic; existing classical theorem provers are then more easily adapt-
able for implementing default reasoning.

In order to keep our exposition simple, we restrict our attention to propo-
sitional default theories, consisting of so-called normal atomic default rules
only, that is, default rules, whose atomic consequents are equivalent to their
respective atomic justifications; also, the prerequisite is assumed to be atomic.
The interested reader may consult (Schaub, 1995) for a treatment of full-
fledged default rules.

Let us start with a brief introduction to a default proof theory, abstracting
from underlying logical inferences: given a normal default theory � D � W � and
a formula F , a default proof for F from � D � W � is a finite sequence of default
rules � δi � i � I with δi � D for all i � I for some ordered index set I such that

W � Conseq � � δi
�
i � I � � �

F �(1.1)

16 A formal introduction to default logic can be found in (Reiter, 1980; Besnard,
1989a).

17 Membership in all extensions is actually computable by appeal to a procedure
testing membership in some extension (Thielscher and Schaub, 1995).
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W � Conseq � � δ0 ��������� δi 	 1 � � �
Prereq � δi � �(1.2)

W � Conseq � � δ0 ��������� δi 	 1 � � ��
� Conseq � δi � �(1.3)

where Conseq � 
 � and Prereq � 
 � provide us with the consequents and prereq-
uisites of a given set of default rules.

Condition (1.2) spells out that D � has to be grounded in W ; this property
reflects the character of an inference rule. In general, a set of default rules
D is grounded in a set of facts W iff there exists an enumeration � δi � i � I of
D that satisfies Condition (1.2). Condition (1.3) expresses the notion of in-
cremental consistency. Here, the “consistent” application of a default rule is
checked whenever one is applied.18 So, for verifying whether a query F is
derivable from a default theory � D � W � it is, in these terms, enough to deter-
mine a grounded and consistent set of default rules DF � D that allows for
proving F from the facts in W and the consequents of all default rules in DF .

As an example, consider the following set of statements about a child
predisposed to an allergy against milk products: “children normally eat ice-
cream”, “ice-cream usually contains milk”, “ice-cream usually contains sugar”,
and “milk is an allergen in case of a predisposition”. The corresponding de-
fault theory along with facts ������� � �
	��
� ��� � 	�� (expressing that the considered
child has the aforementioned predisposition) is the following one:��������� � �

:
� ����� �!�#"%$� ����� �!�#"%$ �

� ����� �!�#"%$
:
$&� � '$&� � ' �

� ���#� �!�#"%$
: (*) + " �(,) + "�� - �

� ������� � ��	��
� ��� � 	�� ��. �/�!0 �1	��
� �2� � 	�� �43��!� ���65���7 � �(1.4)

For instance, we can explain the presence of an allergen in the above situation
by proving 3���� ���65���7 from �����/� � �8	��
� �2� � 	�� by means of the following default
proof (i.e. sequence of rule applications).9 � ��� � �

:
� �#��� �!�#"%$� �#��� �!�#"%$ �

� �#��� �!�#"%$
:
$:� � '$:� � ' ;(1.5)

Importantly, this proof can be found by a top-down backward-chaining pro-
cedure which would start from the query chaining down up to the facts in a
completely local fashion without any consideration of the irrelevant default
rule

� ���#� �!�#"%$
: (,) + "��(,) + "�� . Such procedures are actually used by most automated the-

orem provers, which illustrates the need for local (default) proof procedures.
Here localness is guaranteed by the incrementality of the conditions (1.2)
and (1.3); it is not obtainable in general such as, for instance, in Reiter’s full-
fledged default logic.

Let us now turn to the aforementioned mating-based characterization of
default proofs: the approach of (Schaub, 1995) relies on the idea that a default

18 In the case of non-normal default theories this latter consistency check requires
considerably more efforts than in the normal case described here.
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rule A :B
C can be decomposed into a classical implication A � C along with

two proof-theoretic conditions on the usage of the resulting clause � � A � C � ;
these conditions are referred to as admissibility and compatibility. Intuitively,
both of them rely on a sequence of clauses, stemming from default rules only,
which is induced by the underlying mating (Schaub, 1995). Such a sequence
amounts to an enumeration of default rules � δi � i � I , as given in default proofs
(cf. conditions (1.1)–(1.3)). In fact, while admissibility provides the proof-
theoretic counterpart of Condition (1.2), that is groundedness, compatibility
enforces the notion of consistency described in Condition (1.3).

In order to find out whether a formula F is in some extension of a default
theory � D � W � , one proceeds as follows. First, we transform the default rules
in D into a set of indexed implications WD. In our example, this encoding
yields the set

WD

� � ������� � δ1 � � � � � �
� 3 . δ1 �� � � � �
� 3 . δ2 � . �/�!0 δ2 � � � � � �
� 3 . δ3 � ��� 5 3 � δ3 � �(1.6)

The indexes denote the respective default rules in (1.4) from left to right.
Second, we transform both W and WD into their clausal forms, CW and

CD. The clauses in CD are called δ-clauses; they are of the form19 � � αδ � γδ � ;
all other clauses are referred to as ω-clauses. In our example, we obtain the
following matrix for CW � CD:

� ��	��
� ��� � 	�� ��� � �����/� � ��� � � 	��
� ��� � 	�� � � . �/�!0 � 3��!� ���65���7 � �
�

�
� � ������� � δ1 � � � � � �
� 3 . δ1 ��� � � � � � � �
� 3 . δ2 ��. ���!0 δ2 ���

� � � � � � �
� 3 . δ3 � ��� 5 3 � δ3 � �(1.7)

Finally, a query F is derivable from � D � W � if there is a spanning mating for
the matrix CW � CD � � � F � agreeing with the concepts of admissibility and
compatibility.

As an illustration, let us explain the presence of an allergic reaction. For
this, we have to add the clause containing the negated query � � 3��!� ���
5���7 � to
Matrix (1.7). The resulting matrix can be given (after some clause reordering)
two-dimensionally in the way shown in Figure 16. As indicated by means of
the arcs linking the respective literals, this matrix has a spanning mating. As
it stands, this is a classical proof of 3��!� ���65���7 from W � WD. In order to verify
that this proof is also a default proof we have to confirm admissibility and
compatibility. For this, we consider the enumeration:

� � � �����/� � δ1 � � � � � �
� 3 . δ1 ��� � � � � � � �
� 3 . δ2 ��. �/�!0 δ2 � � �(1.8)

19 Observe that the atomic format allows us to deal with binary δ-clauses only.
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	��
� ��� � 	��
������� �

� � � � �
� 3 . δ1

. ����0 δ2

��� 5 3 � δ3

3��!� ���65���7

� �����/� � δ1

� � � � � �
� 3 . δ2

� � � � � �
� 3 . δ3

� . ���!0
� 3��!� ���65���7

� 	 � � ��� � 	��

Figure 16. The matrix with its proof for the icecream example

This sequence corresponds to default proof (1.5); it is (roughly) obtained by
reversing the sequence obtained by collecting all δ-clauses when following
the connections, starting from the query-clause.

Recall that the groundedness condition (1.2) stipulates that each prerequi-
site αδi

of a default rule in a default proof � δi � i � I has a classical proof from W
and consequences of rules in sequence � δ j � j � i only. This criterion is mapped
on that of admissibility:20 we must verify that all those matrices possess a
spanning mating which consist of, in turn: (A1) the negated prerequisite of
one δ-clause in the sequence, viz. � � αδi � , (A2) all previous δ-clauses in the
same sequence, viz. � � � αδ j � γδ j �

�
j � i � , and (A3) all clauses in CW . Each

instance of this setting amounts to a classical proof of αδi from the premises
given in (1.2).

In our example, we thus have to consider the following submatrices21 of
the matrix in Figure 16:

CW � � � � �����/� � δ1 � � and

CW � � � � �����/� � δ1 � � � � � �
� 3 . δ1 ��� � � � � � � �
� 3 . δ2 � � ;

both of which are spanned by the mating in Figure 16 (even though some
connections in Figure 16 are obsolete). We thus obtain two proofs for prereq-

20 Note that admissibility relies on δ-clauses rather than default consequences.
21 A matrix M is a submatrix of another matrix M � if M emerges from M � by

removing literals and/or entire clauses.
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uisites that are independent of the δ-clauses in the upper part of Sequence (1.8).
Hence, the matrix in Figure 16 and its mating constitute an admissible proof.

Remember that the consistency condition (1.3) requires that each conse-
quence γδi of a (normal) default rule in a default proof � δi � i � I is consistent
with W and all consequences of rules in sequence � δ j � j � i. In presence of an
admissibility check, this criterion can be mapped on the following notion of
compatibility.22 For this, we must verify that all matrices which consist of,
in turn: (C1) one δ-clause in the sequence, viz. � � αδi � γδi � , (C2) all previous
δ-clauses in the same sequence, viz. � � � αδ j � γδ j �

�
j � i � , and (C3) all clauses

in CW , possess no spanning mating. Together these conditions amount to the
proof-theoretic counterpart of consistency as given in Condition (1.3), veri-
fying consistency of each δ-clause in turn.

In our example, we thus have to consider the following submatrices of the
matrix in Figure 16:

CW � � � � �����/� � δ1 � � � � � �
� 3 . δ1 � � and

CW � � � � �����/� � δ1 � � � � � �
� 3 . δ1 ��� � � � � � � �
� 3 . δ2 ��. ����0 δ2 � � �
Both matrices possess no spanning mating, which establishes compatibil-

ity in our example. To see this, observe that the latter matrix contains the
path

��	��
� ��� � 	�� � �����/� � � 3���� ���65���7 � � � � � �
� 3 . δ1 ��. �/�!0 δ2 � �
which contains no complementary literals. Clearly, the existence of such

a path for the latter matrix implies the same for the former matrix.23 Notably
any such path represents a (partial) model of the considered formula. In this
way, the actual task of consistency checking can be mapped onto the genera-
tion of propositional models (Brüning and Schaub, 1996).

To summarize, we have shown that the classical proof of 3��!� ���
5���7 from
W � WD given by the Matrix in Figure 16 and its spanning mating enjoys
admissibility and compatibility, which renders it a default proof of 3��!� ���65���7 .
The overall method is shown to be sound and complete in (Schaub, 1995).
It is important to note that the verification of admissibility and compatibility
relies on substructures of the corresponding classical proof (established by
complementarity); this leaves much room for structure sharing in order to
ease the additional burden added by the treatment of default rules.

22 Note that compatibility relies on δ-clauses rather than default consequences.
23 Considering both matrices may seem redundant from our declarative point of

view. This is, however, different from a procedural point of view involving incre-
mental consistency checks.

compext.tex; 9/03/1998; 14:43; p.40



COMPRESSIONS AND EXTENSIONS 41

Corresponding proof procedures have already been developed in differ-
ent settings and implemented in a system (Schaub, 1995; Schaub and Brün-
ing, 1996). Most of them are carried out by means of inference operations
known from connection calculi (Bibel, 1987b) or model elimination (Love-
land, 1978), namely extension and reduction steps. For incorporating default
reasoning into such a calculus, (roughly) the extension step has to be adapted:
whenever a δ-clause � � Aδ � Cδ � is used as input clause, one has to guarantee
(i) that only Cδ is resolved upon, and (ii) that after such an “extension step”
the ancestor goals of the resulting subgoal � Aδ must not be used for later re-
duction steps. Moreover, (iii) each such “extension step” must guarantee the
compatibility of the obtained proof segment.

A corresponding proof system, called XRay, is described in (Schaub et al.,
1996; Schaub and Nicolas, 1997).

5. CONCLUSIONS

Within this volume, the part on tableaux, of which this chapter is the last
one, has embedded novel results within the classical line of research pursued
within tableaux-like calculi. In a sense it has been the task of the present
chapter to point out the great potential yet contained in the employment of
specialized techniques which for special classes of problems are indispens-
able for their successful treatment. Here “specialization” is not meant as an
independent approach outside of the general tableaux techniques. Rather it is
meant as a special variant within the general approach focusing on particular
syntactic features of formulas. Most if not all such variants may be regarded
as instances of the general principle of compression.

In fact, it is for this principle of compression that we have grounded our
work in the connection method rather than in standard tableau methods, since
the connection method is already a compressed version of tableaux. Given
this basis we have presented two specialized techniques in detail. One applies
to the class of problems which involve many facts and are in this respect
similar to standard databases. Consequently we have been talking of DB-
reduction and DB-unification in the realization of this particular technique.
Its application to problems heavily loaded with facts drastically reduces the
number of backtracking steps during proof search, because the technique does
not commit to a particular solution until it is forced to. Because of this, the
technique may also be considered as a lazy evaluation technique which, as
shown in Section 2, in fact amounts to the compression of the search space of
possible tableaux. As an additional benefit, not only one but several solutions,
encoded in the substitution represented by the DB-abstraction trees, are found
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with this technique. This is a clear advantage in case the prover has to search
for more or even all solutions of a problem.

Although a large amount of work was done to examine the possibilities of
compression and lazy evaluation in the area of automated theorem proving,
there are still four main aspects of DB-unification which look very promising
but were not examined in detail up to now. The first is the effect of splitting
the DB-abstraction trees during the creation of the DB-clauses and within
DB-unification (as shortly outlined in Section 2.5). The second aspect is the
combination of regularity, subsumption, tautology, and failure caching con-
straints (see Chapter 2) with the data structures used in DB-unification. It
will require the implementation of additional operations on DB-abstraction
trees. Furthermore, the combination of DB-unification with the creation of
unit lemmata (Astrachan and Stickel, 1992) looks very promising because,
with lazy evaluation, all unit lemmata may be handled in one proof attempt
so that the search space does not have to be examined again and again for
every single lemma. And, finally, it will be very interesting to study the effect
of melting more (possibly even all) non-unit clauses of a formula into a single
clause by using extended DB-reduction. This is comparable to an extensive
factorization of the formula amounting to a non-normal form of the formula,
but done here on the basis of a normal form theorem prover. As noted at the
end of Section 2.3 this amounts to making the given formulas more regular
and thus easier to prove.

The second specialized technique presented in this chapter is a non-clausal
decision procedure for propositional logic in the form of a generalization of
the standard Davis-Putnam procedure. While theoretically this generaliza-
tion is straightforward, we obtain by this representation of formulas by non-
normal form matrices (suggested earlier for connection methods) a compres-
sion of the formula as well as of the corresponding search space.

In experiments the new procedure has been compared to a clause-based
Davis-Putnam procedure. The results show that the standard transformation
into clausal form and even the definitional transformation can blow up the
proof process. Whereas the standard transformation may considerably in-
crease the size of the formulas, the definitional transformation introduces
extra variables. Working directly on the compact representation of the non-
clausal matrices does not suffer from either problem and therefore allows
shorter proofs. The shortening is due to the application of the matrix elimina-
tion steps and the beta-splitting rule.

It does of course not make much sense to apply our procedure to problems
which are already formulated in clausal form. For such problems specialized
(clause-based) proof procedures are generally more efficient. For problems
which are formulated in a non-clausal form (like those deriving from formulas
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in intuitionistic propositional logic) the non-clausal approach, however, often
fares much better.

Of course, there is still plenty of room for improvements and further re-
search on this co-N P complete problem. To begin with a “simple” one, the
performance of the procedure could be greatly enhanced by implementing
it in a more machine-oriented programming language (like � ). Furthermore,
there are many optimization techniques for clausal provers which could be
transferred to the non-clausal case (for example, the selection of the splitting
literal). Another interesting issue would be a comparison to other (complete)
proof methods such as BDDs (Uribe and Stickel, 1994).

The research reported in this chapter is carried out in the context of the
development of the theorem prover KoMeT. Many techniques other than those
reported here have been studied and partially integrated in it, all published
elsewhere as mentioned in the introduction. In order to give a feel for the
flavor of some of these additional techniques, the chapter summarizes two
further ones of a rather different nature, namely the treatment of equivalences
in an equation-oriented way and the incorporation of subsumption. Both are
again good examples of specialization through compression in view of special
syntactic features. With all these different techniques we envisage a future
computationally adequate theorem prover which will behave optimally also
for problems of a very specific nature without compromising generality.

On the surface intellectics appears to be much more than reasoning in
classical logic. Therefore intellecticians have occasionally doubted whether
theorem proving might be useful at all for their applications. A second line of
our research centered around KoMeT has therefore been to extend the area of
competence for theorem provers in general and for techniques used in KoMeT
in particular. Apart from the extensions mentioned in the introduction the
chapter ends with a technique which makes KoMeT-type provers applicable to
nonmonotonic reasoning.
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